Abstract

3D deconvolution is an established technique in microscopy that may be useful for low-cost high-resolution imaging of the retina. We report on a myopic 3D deconvolution method developed in a Bayesian framework. This method uses a 3D imaging model, a noise model that accounts for both photon and detector noises, a regularization term that is appropriate for objects that are a mix of sharp edges and smooth areas, a positivity constraint, and a smart parameterization of the point-spread function (PSF) by the pupil phase. It estimates the object and the PSF jointly. The PSF parameterization through the pupil phase constrains the inversion by dramatically reducing the number of unknowns. The joint deconvolution is further constrained by an additional longitudinal support constraint derived from a 3D interpretation of the phase-diversity technique. This method is validated by simulated retinal images.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Marginal blind deconvolution of adaptive optics retinal images

L. Blanco and L. M. Mugnier
Opt. Express 19(23) 23227-23239 (2011)

Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images

Laurent M. Mugnier, Thierry Fusco, and Jean-Marc Conan
J. Opt. Soc. Am. A 21(10) 1841-1854 (2004)

Blind deconvolution for thin-layered confocal imaging

Praveen Pankajakshan, Bo Zhang, Laure Blanc-Féraud, Zvi Kam, Jean-Christophe Olivo-Marin, and Josiane Zerubia
Appl. Opt. 48(22) 4437-4448 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription