Abstract

We have developed a compact, multimodal instrument for simultaneous acquisition of en face quasi-confocal fundus images and adaptive-optics (AO) spectral-domain optical coherence tomography (SDOCT) cross-sectional images. The optical system including all AO and SDOCT components occupies a 60×60cm breadboard that can be readily transported for clinical applications. The AO component combines a Hartmann–Shack wavefront sensor and a microelectromechanical systems-based deformable mirror to sense and correct ocular aberrations at 15Hz with a maximum stroke of 4μm. A broadband superluminescent diode source provides 4μm depth resolution for SDOCT imaging. In human volunteer testing, we observed up to an 8dB increase in OCT signal and a corresponding lateral resolution of <10μm as a result of AO correction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).
  3. D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitrix, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  8. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  10. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  12. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef] [PubMed]
  13. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye,"J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  14. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  15. A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  16. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  17. M. Pircher, B. Baumann, E. Gotzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transverse scanning optical coherence tomography," Opt. Lett. 31, 1821-1823 (2006).
    [CrossRef] [PubMed]
  18. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  19. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  20. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  21. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Compact scanning laser ophthalmoscope with high-speed retinal tracker," Appl. Opt. 42, 4621-4632 (2003).
    [CrossRef]
  22. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
    [CrossRef]
  23. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002).
  24. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
    [CrossRef]
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
  26. E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
    [CrossRef]
  27. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
    [CrossRef]

2006 (5)

2005 (3)

2004 (2)

2003 (4)

2002 (4)

A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002).

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1989 (1)

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

Artal, P.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Baumann, B.

Bigelow, C. E.

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
[CrossRef]

Bille, J. F.

Boppart, S. A.

Bouma, B. E.

Bower, B. A.

Burns, S. A.

Campbell, M.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Choi, S.

Choma, M.

de Boer, J. F.

Donnelly, W. I.

Dreher, A. W.

Drexler, W.

Elsner, A. E.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ferguson, R. D.

Fernandez, E. J.

Fernández, E.

Fernández, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitrix, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).

Gao, W.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Gotzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

Hebert, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).

Hermann, B.

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).

Iftimia, N. V.

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
[CrossRef]

Ippen, E. P.

Izatt, J.

Izatt, J. A.

Jones, S.

Jones, S. M.

Jonnal, R. S.

Kaiser, P. K.

D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitrix, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Laut, S.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Li, X. D.

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lowder, C. Y.

D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).

Magill, J. C.

Miller, D. T.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitrix, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Nassif, N.

Olivier, S.

Olivier, S. S.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pitrix, C.

Povazay, B.

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).

Queener, H.

Rha, J.

Romero-Borja, F.

Roorda, A.

Sarunic, M.

Sattmann, H.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

Traboulsi, E. I.

D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).

Unterhuber, A.

Ustun, T. E.

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
[CrossRef]

Webb, R. H.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
[CrossRef]

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Compact scanning laser ophthalmoscope with high-speed retinal tracker," Appl. Opt. 42, 4621-4632 (2003).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002).

Weinreb, R. N.

Werner, J. S.

White, M. A.

Williams, D. R.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Yang, C.

Yun, S. H.

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Appl. Opt. (2)

J. Biomed. Opt. (2)

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. H. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (10)

E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef]

E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002).

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
[CrossRef]

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, 1996).

D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Retinal Imaging (Mosby Elsevier, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the multimodal AO-SDOCT retinal imaging system. Three subcomponents of the system are the LSLO wide-field imager, the SDOCT imaging optics and spectrometer, and the AO subsystem (wavefront compensation and correction). Each subsystem is highlighted by a shaded box. Individual components are listed in the legend.

Fig. 2
Fig. 2

Photograph of compact SDOCT retinal imaging system. (a) Housing consists of all optical components assembled on a 60 × 60 cm aluminum breadboard with control electronics and hardware enclosed in a rack-mount drawer under the breadboard. (b) View of optical setup.

Fig. 3
Fig. 3

Example of image quality achieved with AO implemented. Shown is a composite SDOCT image of an average of four individual B scans that consist of 1024 A scans spanning 6.5°. Retinal layers labeled at right are: NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; CC, connecting cilia; RPE, retinal pigment epithelium; C, choroid.

Fig. 4
Fig. 4

Fundus images acquired with the LSLO. (a) illustrates the imaging performance for visualizing the optic disc. (b) spans the region from the optic disc to the fovea. A portion of the disc is visible (left) as are the foveal pit and associated avascular zone (right). Instantaneous position of the scanning OCT beam is also visible as indicated by the arrow.

Fig. 5
Fig. 5

Examples of image quality improvement with AO. (a) is an individual frame of typical quality acquired with our system without AO implemented. (b) demonstrates the improvements observed upon closed-loop aberration correction. There is an increase in signal throughout the image with a particularly noticeable change in the vicinity of the photoreceptors. Both images consist of 1024 A scans spanning 6.5°.

Fig. 6
Fig. 6

Effect of AO on depth reflectivity profiles. Depth-dependent return from retinal structures is shown with and without AO. Data is the average of 100 A scans acquired at 3° eccentricity (superior). An increase in signal of approximately 7 8 dB is achieved near the photoreceptors while the signal at the NFL experiences a modest increase ( 1 dB ) .

Fig. 7
Fig. 7

AO performance and its effect on wavefront aberrations. Left column contains data with AO implemented [(a),(c),(e)] while the right column illustrates system performance without AO [(b), (d), (f)]. (a) and (b) are representative SDOCT images acquired with AO on and off, respectively. Corresponding wavefront error maps are shown [(c) and (d)] as are the calculated PSFs [(e) and (f)]. Temporal profile of the rms error is shown in (g) and the average rms error (for all frames with AO on and off) as a function of Zernike coefficient order is displayed in (h).

Fig. 8
Fig. 8

Examples of transverse resolution achieved with AO. Single cross-sectional SDOCT scans with [(a), (d)] and without adaptive optics [(b), (e)]. Smallest capillary-associated features in the posterior part of the inner nuclear layer can be resolved more effectively (a) with AO but not (b) without AO. Areas indicated by the boxes in (a) and (b) are shown magnified in the inset located at the lower right in each image. Lines drawn in the inset indicate profiles through three capillary features (FWHM values of 3.4, 4.4, and 3.0 μ m , respectively). These profiles for both cases are shown in (c). (d) ELM, indicated by the arrow, is resolved, but this does not hold for panel (e). A depth reflectance profile acquired from 70 adjacent A scans centered on the arrow location in (d) and (e) is shown in (f). Arrows in (f) indicate the location of the ELM in the depth reflectance profile.

Fig. 9
Fig. 9

Effects of defocus on depth reflectance profiles. (a)–(d) contains 1890 × 600 μ m ( horizontal × vertical ) images acquired through the fovea with the defocus set at 0.9, 0.56, 0.23, and 0 D , respectively. Arrow indicates the approximate depth of the focus in each case. Corresponding reflectivity profiles acquired from the average of 100 adjacent A scans in (a)–(d) are offset and displayed in (e) for each defocus value. (f) displays the ratio of the reflectance acquired from each of the three defocused B scans to that acquired at 0 D . Arrows indicate the approximate focal position corresponding to those shown in (a)–(d). Several retinal features are identified in the line profiles in (e): NFL, nerve fiber layer; IPL, inner plexiform layer; OPL, outer plexiform layer; ONL, outer nuclear layer, RPE, retinal pigment epithelium.

Metrics