Abstract

Adaptive optics scanning laser ophthalmoscopes have been used to produce noninvasive views of the human retina. However, the range of aberration compensation has been limited by the choice of deformable mirror technology. We demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human eye while maintaining the quality of the retinal imagery. We verified experimentally that the use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the micro-electro-mechanical-system mirror alone and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. We also demonstrated that the large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Webb and G. Hughes, "Scanning laser ophthalmoscope," IEEE Trans. Biomed. Eng. 28, 488-492 (1981).
    [CrossRef] [PubMed]
  2. R. Webb, G. Hughes, and F. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
    [CrossRef] [PubMed]
  3. A. Dreher, J. Bille, and R. Weinreb, "Active optical depth resolution improvement of the laser tomography scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef] [PubMed]
  4. J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  5. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Herbert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  6. Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).
  7. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, and D. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberration," Opt. Express 8, 631-643 (2001).
    [CrossRef] [PubMed]
  8. F. Vargas-Martin, P. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  9. T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
    [CrossRef]
  10. N. Doble and D. Williams, "The applications of MEMS technology for adaptive optics in vision science," IEEE J. Quantum Electron. 10, 629-635 (2004).
    [CrossRef]
  11. J. Porter, A. Guirao, I. Cox, and D. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  12. L. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  13. A. Elsner, "Fundamental properties of the retina," in Adaptive Optics for Vision Science (Wiley, 2006), pp. 205-234.
  14. G. Yoon, "Wavefront sensing and diagnostic users," in Adaptive Optics for Vision Science (Wiley, 2006), pp. 63-81.
  15. J. Liang, B. Grimm, S. Goelz, and J. Bille, "Objective measurement of wavefront aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  16. D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
    [CrossRef]
  17. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, "Double-deformable-mirror adaptive optics system for phase compensation," Appl. Opt. 45, 2638-2642 (2006).
    [CrossRef] [PubMed]
  18. J. Barchers, "Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations," J. Opt. Soc. Am. A 19, 926-945 (2002).
    [CrossRef]
  19. M. Roggeman and D. Lee, "Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere," Appl. Opt. 37, 4577-4585 (1998).
    [CrossRef]
  20. M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).
  21. Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 140021-140025 (2006).
    [CrossRef]
  22. K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
    [CrossRef] [PubMed]
  23. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
    [CrossRef] [PubMed]

2006

Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).

Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 140021-140025 (2006).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, "Double-deformable-mirror adaptive optics system for phase compensation," Appl. Opt. 45, 2638-2642 (2006).
[CrossRef] [PubMed]

2005

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

2004

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

N. Doble and D. Williams, "The applications of MEMS technology for adaptive optics in vision science," IEEE J. Quantum Electron. 10, 629-635 (2004).
[CrossRef]

2002

2001

1998

1997

1994

1989

1987

1981

R. Webb and G. Hughes, "Scanning laser ophthalmoscope," IEEE Trans. Biomed. Eng. 28, 488-492 (1981).
[CrossRef] [PubMed]

Artal, P.

Barchers, J.

Bierden, P.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
[CrossRef]

Bifano, T.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
[CrossRef]

Bille, J.

Bradley, A.

Campbell, M.

Chen, L.

Cheng, X.

Cox, I.

Delori, F.

Dimas, C.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
[CrossRef]

Doble, N.

N. Doble and D. Williams, "The applications of MEMS technology for adaptive optics in vision science," IEEE J. Quantum Electron. 10, 629-635 (2004).
[CrossRef]

Donnelly, W.

Dreher, A.

Dunlop, C.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Elsner, A.

A. Elsner, "Fundamental properties of the retina," in Adaptive Optics for Vision Science (Wiley, 2006), pp. 205-234.

Goelz, S.

Grimm, B.

Guirao, A.

Herbert, T.

Hofer, H.

Hong, X.

Horsley, D.

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Hou, J.

Hu, S.

Hughes, G.

R. Webb, G. Hughes, and F. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
[CrossRef] [PubMed]

R. Webb and G. Hughes, "Scanning laser ophthalmoscope," IEEE Trans. Biomed. Eng. 28, 488-492 (1981).
[CrossRef] [PubMed]

Jiang, W.

Langlois, M.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Laut, S.

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Lee, D.

Liang, J.

Love, D.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Miller, D.

Myers, R.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Park, H.

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Perreault, J.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
[CrossRef]

Poonja, S.

Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

Porter, J.

Prieto, P.

Queener, H.

Roggeman, M.

Romero-Borja, F.

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Herbert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

Roorda, A.

Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 140021-140025 (2006).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Herbert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

Saunter, C.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Singer, B.

Thibos, L.

Vargas-Martin, F.

Venkateswaran, K.

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

Webb, R.

R. Webb, G. Hughes, and F. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
[CrossRef] [PubMed]

R. Webb and G. Hughes, "Scanning laser ophthalmoscope," IEEE Trans. Biomed. Eng. 28, 488-492 (1981).
[CrossRef] [PubMed]

Weinreb, R.

Werner, J.

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Williams, D.

Wu, J.

Xu, B.

Yamauchi, Y.

Yoon, G.

Zhang, X.

Zhang, Y.

Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 140021-140025 (2006).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Quantum Electron.

N. Doble and D. Williams, "The applications of MEMS technology for adaptive optics in vision science," IEEE J. Quantum Electron. 10, 629-635 (2004).
[CrossRef]

IEEE Trans. Biomed. Eng.

R. Webb and G. Hughes, "Scanning laser ophthalmoscope," IEEE Trans. Biomed. Eng. 28, 488-492 (1981).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 140021-140025 (2006).
[CrossRef]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

M. Langlois, C. Saunter, C. Dunlop, R. Myers, and D. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Lett. 12, 1689-1691 (2004).

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

Proc. SPIE

D. Horsley, H. Park, S. Laut, and J. Werner, "Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry," Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror," Proc. SPIE 6138, 0Z1-0Z11 (2006).

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, "Michromachined deformable mirrors for adaptive optics," Proc. SPIE 4825, 10-13 (2002).
[CrossRef]

Other

A. Elsner, "Fundamental properties of the retina," in Adaptive Optics for Vision Science (Wiley, 2006), pp. 205-234.

G. Yoon, "Wavefront sensing and diagnostic users," in Adaptive Optics for Vision Science (Wiley, 2006), pp. 63-81.

Supplementary Material (1)

» Media 1: AVI (4625 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Top view of the dual-DM AOSLO system. SLD, superluminescent laser diode; L, lens; BS, beam splitter; PM, plane mirror: SM, spherical mirror; WFS, wavefront sensor; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Transportable AOSLO system side view. Optical components are mounted on the top of a 2 × 3 rollable cart, and all electronics are mounted in the rack for mobility.

Fig. 3
Fig. 3

Deformable mirrors used in the AOSLO system: (a) bimorph DM, manufactured by Aoptix Technologies. The bimorph mirror has 35 actuators with a 10 mm diameter clear optical aperture and 18 μ m stroke. (b) MEMS DM, manufactured by Boston Micromachines Corp. The MEMS mirror has 144 actuators, with a 3.3 mm × 3.3 mm optical clear aperture and 1.5 μ m stroke.

Fig. 4
Fig. 4

Simplified version of a 1:2 relay telescope: (a) raytracing with three field angles and (b) magnified image plane. The three colors represent three field angles at 0 ° (red), 5 ° (green), and 10 ° (blue).

Fig. 5
Fig. 5

Optical footprints related to various scanning positions at the entrance pupil of the eye: (a) 1.45 ° (red), 0 ° (blue), 1.45 ° (green) vertical scanning, total vertical shift 300 μ m ; (b) 1.45 ° (red), 0 ° (blue), 1.45 ° (green) horizontal scanning, total horizontal shift 180 μ m .

Fig. 6
Fig. 6

Retina images from a healthy subject with dual AO corrections taken at 3 ° nasal/3° superior retina, 1.1 ° scanning angle at wavelength of 843 nm . (a) Without AO correction, (b) with closed-loop operation of the bimorph DM, (c) with closed-loop operation of the MEMS DM.

Fig. 7
Fig. 7

Measured wavefront aberration over a 6 mm pupil before and after AO compensation.

Fig. 8
Fig. 8

Retina images with dual AO corrections taken at 3 ° nasal/3° superior retina, 1.1 ° scanning angle at wavelength of 843 nm . (a) Blood vessel layer and (b) nerve fiber layer.

Fig. 9
Fig. 9

⟨Multimedia online; josaa.osa.org⟩ Real-time image sequences when both DMs were applied to acquire high-resolution images of the nerve fiber layer.

Metrics