Abstract

After discussing the rationale and assumptions of the ANSI Z136.1-2000 Standard for protection of the human eye from laser exposure, we present the concise formulation of the exposure limits expressed as maximum permissible radiant exposure (in Jcm2) for light overfilling the pupil. We then translate the Standard to a form that is more practical for typical ophthalmic devices or in vision research situations, implementing the special qualifications of the Standard. The safety limits are then expressed as radiant power (watts) entering the pupil of the eye. Exposure by repetitive pulses is also addressed, as this is frequently employed in ophthalmic applications. Examples are given that will familiarize potential users with this format.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ANSI, "American National Standard for safe use of lasers (ANSI 136.1)," ANSI 136.1-2000 (The Laser Institute of America, 2000).
  2. ACGIH, American Conference of Governmental Industrial Hygienists; TLVs and BEIs (ACGIH, 2005).
  3. International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to laser radiation of wavelengths between 180nm and 1,000microns," Health Phys. 71, 804-819 (1996).
    [PubMed]
  4. International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400nm and 1.4micron," Health Phys. 79, 431-440 (2000).
    [CrossRef] [PubMed]
  5. International Electrotechnical Commission (IEC), "Safety of laser products," IEC 60825 (IEC, 2001).
  6. Health Council of the Netherlands (HCN), "Health based exposure limits for electromagnetic radiation in the wavelength range from 100nanometre to 1millimetre," (HCN, 1993).
  7. International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3microns)," Health Phys. 73, 539-554 (1997).
    [PubMed]
  8. J. J. Vos and D. van Norren, "Retinal damage by optical radiation. An alternative to current, ACGIH-inspired guidelines," Clin. Exp. Optom. 88, 200-211 (2005).
    [CrossRef] [PubMed]
  9. F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
    [CrossRef] [PubMed]
  10. M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
    [PubMed]
  11. G. C. de Wit, "Safety norms for Maxwellian view laser scanning devices based on the ANSI standards," Health Phys. 71, 766-769 (1996).
    [CrossRef] [PubMed]
  12. D. Sliney, D. Aron-Rosa, F. Delori, F. Fankhauser,R. Landry, M. Mainster, J. Marshall, B. Rassow, B. Stuck, S. Trokel, T. M. West, and M. Wolffe, "Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP)," Appl. Opt. 44, 2162-2176 (2005).
    [CrossRef] [PubMed]
  13. D. H. Sliney, "Retinal injury from laser radiation," Nonlinear Opt. 21, 1-17 (1999).
  14. D. J. Lund, "Action spectrum for retinal thermal damage," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 209-228.
  15. Thermal confinement occurs when the energy is delivered so rapidly that the energy absorbed in the relaxation volume of irradiated tissue is not changed by heat flow. The "thermal confinement duration" (tmin) is the duration during which confinement is assumed to occur. This duration increases with the wavelength because the relaxation volume of irradiated tissue is increased (stronger penetration of light in the deeper layers of the fundus). The duration tmin is very small when the relaxation volume is small (both in the UV and the IR) when penetration into tissue is small (skin).
  16. B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
    [CrossRef] [PubMed]
  17. W. T. J. Ham and H. A. Mueller, "The photopathology and nature of the blue light and near-UV retinal lesions produced by lasers and other optical sources," in Laser Applications in Medicine and Biology, M.L.Wolbarsht, ed. (Plenum, 1989), pp. 191-246.
    [CrossRef]
  18. B. E. Stuck, "The retina and action spectrum for pnotoretintis," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 193-208.
  19. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, 1980), p. 469.
  20. D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
    [CrossRef] [PubMed]
  21. Drafts of the ANSI 2005 Standard reveal no substantial changes in Table 5a and 5b of the current Standard, in the definition of parameters (CE,CA,CC,CB,T2,γ,P,tmin) in Section 8.3 ("Special Qualifications for Ocular Exposures"), and some clarifications in the assessment of exposures by repetitive pulses. Table and paragraph numbers remain the same. Among many other changes, the new Standard contains revised and modified definitions of parameters and a drastic revision in the classification of lasers.
  22. Class 1 lasers are those that cannot emit radiation in excess of the MP level for exposure durations longer than 2.7h(104s). There is no hazard. Class 2 lasers are those that cannot emit radiation in excess of the MP level (400-700nm) for exposure durations longer than 0.25s (aversion reflex). See ANSI Standard for complete classification.
  23. R. W. Gubisch, "Optical performance of the human eye," J. Opt. Soc. Am. 57, 407-415 (1967).
    [CrossRef]
  24. D. H. Sliney and B. C. Frasier, "Evaluation of optical radiation hazards," Appl. Opt. 12, 1-24 (1973).
    [CrossRef] [PubMed]
  25. E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
    [PubMed]
  26. J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
    [CrossRef] [PubMed]
  27. A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
    [CrossRef] [PubMed]
  28. W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other sources," Am. J. Ophthalmol. 66, 15-20 (1968).
    [PubMed]
  29. L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).
  30. D. H. Sliney and M. L. Wolborsht, "Safety standards and measurement techniques for high intensity light sources," Vision Res. 20, 1133-1141 (1980).
    [CrossRef] [PubMed]
  31. S. A. Burns and R. H. Webb, "Optical generation of the visual stimulus," in Handbook of Optics, M.Bass, E.W.van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1994), pp. 1-28.
  32. CJ is not explicitly named in the Standard but was included here to reflect a factor-2 discontinuity in the Standard: MPHc's in the 700-1050nm range are 2 times smaller than those in the corresponding 1050-1400nm range.
  33. J. J. Vos, "A theory of retinal burns," Bull. Math. Biophys. 24, 115-128 (1962).
    [CrossRef] [PubMed]
  34. C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
    [CrossRef] [PubMed]
  35. M. A. Mainster, T. J. White, J. H. Tips, and P. W. Wilson, "Retinal temperature increases produced by intense light sources," J. Opt. Soc. Am. 60, 264-270 (1970).
    [CrossRef] [PubMed]
  36. E. S. Beatrice and G. D. Frisch, "Retinal laser damage thresholds as a function of image diameter," Arch. Environ. Health 27, 322-326 (1973).
    [PubMed]
  37. J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
    [CrossRef]
  38. D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
    [CrossRef]
  39. The pupil factor P is not used explicitly in the Standard. For 400≥λ≥600nm and t≥0.7s, the pupil diameter is assumed to be 3mm, and the factor P is (7/3)2=5.44 (cell b; rounded down to 5.4 in the Standard). The Standard provides interpolations that we translated in Table (upper part): between 0.07s and 0.7s (cell a) and between 600 and 700nm (cell d). We added an interpolation for the combined interval 0.07≤t≤0.7s and 400≥λ≥600nm that was not covered in the Standard (cell c); P is then the product of the values in cells a and d, divided by 5.44.
  40. The discrepancy comes from reducing the source radiance from 100CBJcm−2sr−1 (ANSI Table 5b) to 20CBJcm−2sr−1 [ANSI Section 8.3(1)], and thus a factor of 5, to account for change in the pupil diameter instead of a factor 5.44 [ANSI Section 8.3(2)].
  41. Extrapolation of the MPΦ from cell 7 (Table ) toward shorter exposure durations intersects the MPΦ from cell 4a at a duration tex=2.75×10−3(CBα)1.33. The shortest value for tex occurs for CB=1(400<λ<450nm) and α=1.5mrad and equals 4.7ms.
  42. The IEC laser safety Standards defines CE differently from the ANSI Standard for large sources (CE,IEC=αmax/αmin for all α>αmax). The reason is that the IEC Standard emphasizes measurements and requires one to measure only the power or energy arriving within a cone angle of αmax; hence, CE is constant for larger angles. However, the ANSI Standard emphasizes calculations rather than measurements and therefore provides an ever-increasing CE for angles increasing beyond αmax.
  43. For a circular area with α≥αmax exposed with a radiant power Φtotal, the power Φin within a cone of angle αmax[Φin=(αmax/α)2Φtotal] is compared with the MPΦin calculated using CE=αmax/αmin. The factor CE is thus essentially replaced by (α/αmax)2(αmax/αmin)=(α2/αminαmax), identical to the value of CE for α≥αmax already incorporated into the Standard (Table II[a]). The method of "ignoring the power outside an αmax-cone" is identical to proper application of the current Standard for circular fields.
  44. ANSI, "American National Standard for safe use of lasers (ANSI 136.1)," ANSI 136.1-1993 (Revision of ANSI 136.1-1986) (The Laser Institute of America, 1993).
  45. D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).
  46. D. E. Freund and D. H. Sliney, "Dependence of retinal model temperature calculations on beam shape and absorption coefficients," Lasers Life Sci. 8, 229-247 (1999).
  47. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  48. W.H.A. Rushton, "Visual pigments in man," in Handbook of Sensory Physiology, H. J. A.Dartnall, ed. (Springer-Verlag, 1972), pp. 364-394.
    [CrossRef]
  49. We have developed such programs written in an Excel spreadsheet (Microsoft, Mac, or PC). We will share this program with interested individuals only if they assume full responsibility for its use . If interested, contact F. C. Delori by e-mail at francois.delori@schepens.harvard.edu. Individuals can also write their own. However, be aware of small discrepancies in Tables to between the limits or parameters given in neighboring cells. For example, In Table , there is a 5% difference between the MPHc's given on the left and right sides of the α=γ line. In Table (lower part), there is a 4% difference between the pupil factor P given in cells 1 and 2 (at t=0.7s).
  50. T. S. Group, "Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group," Arch. Ophthalmol. 117, 1329-1345 (1999).
  51. D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
    [CrossRef] [PubMed]
  52. R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
    [CrossRef]
  53. For application of rule 3, the MP radiant exposure for cell 3 of Table applies to an exposure duration as short as 100fs (the limit of the Standard). This is because the formulation of rule 3 predates the introduction of the more conservative thermoacoustic limits (cells 1 and 2, Table ).
  54. M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
    [CrossRef] [PubMed]
  55. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1449 (1987).
    [CrossRef] [PubMed]
  56. R. W. Webb, G. W. Hughes, and O. Pomerantzeff, "Flying spot TV ophthalmoscope," Appl. Opt. 19, 2991-2997 (1980).
    [CrossRef] [PubMed]
  57. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005).
    [CrossRef] [PubMed]
  58. Commercially available SLO's are manufactured by Heidelberg Engineering (Heideberg, Germany) and by Confocal Technologies (Buena Vista, Virginia).
  59. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14, 7144-7158 (2006).
    [CrossRef] [PubMed]
  60. U. Klingbeil, "Safety aspects of laser scanning ophthalmoscopes," Health Phys. 51, 81-93 (1986).
    [CrossRef] [PubMed]
  61. L. Li and J. S. Rosenshein, "Safety considerations for simultaneous multiple wavelength exposure in scanning laser ophthalmoscopes," Health Phys. 64, 170-177 (1993).
    [CrossRef] [PubMed]
  62. T. L. Lyon, "Hazard analysis technique for multiple wavelength lasers," Health Phys. 49, 221-226 (1985).
    [CrossRef] [PubMed]
  63. W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
    [CrossRef] [PubMed]

2006

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14, 7144-7158 (2006).
[CrossRef] [PubMed]

2005

2002

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

2001

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

2000

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400nm and 1.4micron," Health Phys. 79, 431-440 (2000).
[CrossRef] [PubMed]

1999

D. E. Freund and D. H. Sliney, "Dependence of retinal model temperature calculations on beam shape and absorption coefficients," Lasers Life Sci. 8, 229-247 (1999).

T. S. Group, "Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group," Arch. Ophthalmol. 117, 1329-1345 (1999).

D. H. Sliney, "Retinal injury from laser radiation," Nonlinear Opt. 21, 1-17 (1999).

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

1997

International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3microns)," Health Phys. 73, 539-554 (1997).
[PubMed]

1996

International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to laser radiation of wavelengths between 180nm and 1,000microns," Health Phys. 71, 804-819 (1996).
[PubMed]

G. C. de Wit, "Safety norms for Maxwellian view laser scanning devices based on the ANSI standards," Health Phys. 71, 766-769 (1996).
[CrossRef] [PubMed]

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

1993

L. Li and J. S. Rosenshein, "Safety considerations for simultaneous multiple wavelength exposure in scanning laser ophthalmoscopes," Health Phys. 64, 170-177 (1993).
[CrossRef] [PubMed]

1987

1986

U. Klingbeil, "Safety aspects of laser scanning ophthalmoscopes," Health Phys. 51, 81-93 (1986).
[CrossRef] [PubMed]

1985

T. L. Lyon, "Hazard analysis technique for multiple wavelength lasers," Health Phys. 49, 221-226 (1985).
[CrossRef] [PubMed]

1984

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).

1983

M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
[PubMed]

1980

F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
[CrossRef] [PubMed]

D. H. Sliney and M. L. Wolborsht, "Safety standards and measurement techniques for high intensity light sources," Vision Res. 20, 1133-1141 (1980).
[CrossRef] [PubMed]

R. W. Webb, G. W. Hughes, and O. Pomerantzeff, "Flying spot TV ophthalmoscope," Appl. Opt. 19, 2991-2997 (1980).
[CrossRef] [PubMed]

1977

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

1975

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

1973

E. S. Beatrice and G. D. Frisch, "Retinal laser damage thresholds as a function of image diameter," Arch. Environ. Health 27, 322-326 (1973).
[PubMed]

D. H. Sliney and B. C. Frasier, "Evaluation of optical radiation hazards," Appl. Opt. 12, 1-24 (1973).
[CrossRef] [PubMed]

1970

1968

W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other sources," Am. J. Ophthalmol. 66, 15-20 (1968).
[PubMed]

1967

1962

J. J. Vos, "A theory of retinal burns," Bull. Math. Biophys. 24, 115-128 (1962).
[CrossRef] [PubMed]

Agopov, M.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Ahmad, K.

Aldrich, R. C.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

Amnotte, R. E.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Aron-Rosa, D.

Beatrice, E. S.

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

E. S. Beatrice and G. D. Frisch, "Retinal laser damage thresholds as a function of image diameter," Arch. Environ. Health 27, 322-326 (1973).
[PubMed]

Berry, E. R.

W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other sources," Am. J. Ophthalmol. 66, 15-20 (1968).
[PubMed]

Bille, J. F.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Bindewald-Wittich, A.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Buffington, G.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Burns, S. A.

S. A. Burns and R. H. Webb, "Optical generation of the visual stimulus," in Handbook of Optics, M.Bass, E.W.van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1994), pp. 1-28.

Cain, C.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Carothers, V.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Connolly, E.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

de Wit, G. C.

G. C. de Wit, "Safety norms for Maxwellian view laser scanning devices based on the ANSI standards," Health Phys. 71, 766-769 (1996).
[CrossRef] [PubMed]

Delori, F.

Delori, F. C.

R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1449 (1987).
[CrossRef] [PubMed]

M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
[PubMed]

F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
[CrossRef] [PubMed]

DiCarlo, C.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Druessel, J. J.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Dubra, A.

Edsall, P. R.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Edthofer, F.

D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
[CrossRef]

Eilert, B.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Eldridge, S.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).

Fankhauser, F.

Farrel, R. A.

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

Feeney-Burns, L.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).

Flotte, T. J.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Frasier, B. C.

Freund, D. E.

D. E. Freund and D. H. Sliney, "Dependence of retinal model temperature calculations on beam shape and absorption coefficients," Lasers Life Sci. 8, 229-247 (1999).

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

Frisch, G. D.

E. S. Beatrice and G. D. Frisch, "Retinal laser damage thresholds as a function of image diameter," Arch. Environ. Health 27, 322-326 (1973).
[PubMed]

Gabel, V. P.

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

Gee, B. P.

Geeraets, W. J.

W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other sources," Am. J. Ophthalmol. 66, 15-20 (1968).
[PubMed]

Gerstman, B. S.

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

Giese, G.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Gragoudas, E. S.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Gray, D. C.

Group, T. S.

T. S. Group, "Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group," Arch. Ophthalmol. 117, 1329-1345 (1999).

Gubisch, R. W.

Ham, W. T.

M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
[PubMed]

Ham, W. T. J.

W. T. J. Ham and H. A. Mueller, "The photopathology and nature of the blue light and near-UV retinal lesions produced by lasers and other optical sources," in Laser Applications in Medicine and Biology, M.L.Wolbarsht, ed. (Plenum, 1989), pp. 191-246.
[CrossRef]

Hammer, D. X.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Han, M.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Hebert, T.

Hilderbrand, E. S.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).

Hollins, R. C.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Holz, F. G.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Hopkins, R. A.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Hughes, G. W.

Husain, D.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Jacques, S. L.

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

Kennedy, P. K.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Klingbeil, U.

U. Klingbeil, "Safety aspects of laser scanning ophthalmoscopes," Health Phys. 51, 81-93 (1986).
[CrossRef] [PubMed]

La Schiazza, O.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Landry, R.

Li, L.

L. Li and J. S. Rosenshein, "Safety considerations for simultaneous multiple wavelength exposure in scanning laser ophthalmoscopes," Health Phys. 64, 170-177 (1993).
[CrossRef] [PubMed]

Lund, B. J.

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

Lund, D. J.

D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
[CrossRef]

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

D. J. Lund, "Action spectrum for retinal thermal damage," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 209-228.

Lyon, T. L.

T. L. Lyon, "Hazard analysis technique for multiple wavelength lasers," Health Phys. 49, 221-226 (1985).
[CrossRef] [PubMed]

Mainster, M.

Mainster, M. A.

M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
[PubMed]

F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
[CrossRef] [PubMed]

M. A. Mainster, T. J. White, J. H. Tips, and P. W. Wilson, "Retinal temperature increases produced by intense light sources," J. Opt. Soc. Am. 60, 264-270 (1970).
[CrossRef] [PubMed]

Marshall, J.

Marshall, W. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

McCally, R. L.

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

McLin, L. N.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Mellerio, J.

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

Merigan, W.

Michaud, N.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Miller, J. W.

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Molchany, J. W.

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

Mueller, H. A.

W. T. J. Ham and H. A. Mueller, "The photopathology and nature of the blue light and near-UV retinal lesions produced by lasers and other optical sources," in Laser Applications in Medicine and Biology, M.L.Wolbarsht, ed. (Plenum, 1989), pp. 191-246.
[CrossRef]

Ness, J. W.

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

Niemz, M. H.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Noojin, G. D.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Notabartolo, J.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Parker, J. S.

F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
[CrossRef] [PubMed]

Payne, D. J.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Phillips, S.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Polhamus, G.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Pomerantzeff, O.

Porter, J.

Randolph, D. I.

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

Rassow, B.

Reinholz, F.

Roach, W.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Roach, W. P.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Robinson, D. A.

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

Rockwell, B.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Rockwell, B. A.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Rockwell, R. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

Rogers, M. E.

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

Romero-Borja, F.

Roorda, A.

Rosenshein, J. S.

L. Li and J. S. Rosenshein, "Safety considerations for simultaneous multiple wavelength exposure in scanning laser ophthalmoscopes," Health Phys. 64, 170-177 (1993).
[CrossRef] [PubMed]

Rushton, W.H.A.

W.H.A. Rushton, "Visual pigments in man," in Handbook of Sensory Physiology, H. J. A.Dartnall, ed. (Springer-Verlag, 1972), pp. 364-394.
[CrossRef]

Schulmeister, K.

D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
[CrossRef]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

Schuster, K.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Seiser, B.

D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
[CrossRef]

Skavenski, A. A.

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

Sliney, D.

Sliney, D. H.

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

D. E. Freund and D. H. Sliney, "Dependence of retinal model temperature calculations on beam shape and absorption coefficients," Lasers Life Sci. 8, 229-247 (1999).

D. H. Sliney, "Retinal injury from laser radiation," Nonlinear Opt. 21, 1-17 (1999).

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

D. H. Sliney and M. L. Wolborsht, "Safety standards and measurement techniques for high intensity light sources," Vision Res. 20, 1133-1141 (1980).
[CrossRef] [PubMed]

D. H. Sliney and B. C. Frasier, "Evaluation of optical radiation hazards," Appl. Opt. 12, 1-24 (1973).
[CrossRef] [PubMed]

Smith, P. A.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Snyder, S.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Steinman, R. M.

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stockton, K.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Stolarski, D.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Stolarski, D. J.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Stuck, B.

Stuck, B. E.

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

B. E. Stuck, "The retina and action spectrum for pnotoretintis," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 193-208.

Sun, H.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Thomas, R.

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Thomas, R. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

Thompson, C. R.

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

Till, S.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Timberlake, G. T.

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

Tips, J. H.

Toth, C. A.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

Trokel, S.

Tumbar, R.

Twietmeyer, T. H.

van Norren, D.

J. J. Vos and D. van Norren, "Retinal damage by optical radiation. An alternative to current, ACGIH-inspired guidelines," Clin. Exp. Optom. 88, 200-211 (2005).
[CrossRef] [PubMed]

Venkateswaran, K.

Vos, J. J.

J. J. Vos and D. van Norren, "Retinal damage by optical radiation. An alternative to current, ACGIH-inspired guidelines," Clin. Exp. Optom. 88, 200-211 (2005).
[CrossRef] [PubMed]

J. J. Vos, "A theory of retinal burns," Bull. Math. Biophys. 24, 115-128 (1962).
[CrossRef] [PubMed]

Webb, R. H.

R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1449 (1987).
[CrossRef] [PubMed]

S. A. Burns and R. H. Webb, "Optical generation of the visual stimulus," in Handbook of Optics, M.Bass, E.W.van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1994), pp. 1-28.

Webb, R. W.

West, T. M.

White, T. J.

Williams, D. R.

Wilson, P. W.

Wolbarsht, M.

D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, 1980), p. 469.

Wolborsht, M. L.

D. H. Sliney and M. L. Wolborsht, "Safety standards and measurement techniques for high intensity light sources," Vision Res. 20, 1133-1141 (1980).
[CrossRef] [PubMed]

Wolffe, M.

Wolfing, J. I.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Yu, J.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

Zimmerman, S. A.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

Zuclich, J. A.

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

Zwick, H.

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

Am. J. Ophthalmol.

W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other sources," Am. J. Ophthalmol. 66, 15-20 (1968).
[PubMed]

Appl. Opt.

Arch. Environ. Health

E. S. Beatrice and G. D. Frisch, "Retinal laser damage thresholds as a function of image diameter," Arch. Environ. Health 27, 322-326 (1973).
[PubMed]

Arch. Ophthalmol.

T. S. Group, "Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group," Arch. Ophthalmol. 117, 1329-1345 (1999).

D. Husain, J. W. Miller, N. Michaud, E. Connolly, T. J. Flotte, and E. S. Gragoudas, "Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization," Arch. Ophthalmol. 114, 978-985 (1996).
[CrossRef] [PubMed]

Bull. Math. Biol.

C. R. Thompson, B. S. Gerstman, S. L. Jacques, and M. E. Rogers, "Melanin granule model for laser-induced thermal damage in the retina," Bull. Math. Biol. 58, 513-553 (1996).
[CrossRef] [PubMed]

Bull. Math. Biophys.

J. J. Vos, "A theory of retinal burns," Bull. Math. Biophys. 24, 115-128 (1962).
[CrossRef] [PubMed]

Clin. Exp. Optom.

J. J. Vos and D. van Norren, "Retinal damage by optical radiation. An alternative to current, ACGIH-inspired guidelines," Clin. Exp. Optom. 88, 200-211 (2005).
[CrossRef] [PubMed]

Health Phys.

International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to laser radiation of wavelengths between 180nm and 1,000microns," Health Phys. 71, 804-819 (1996).
[PubMed]

International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400nm and 1.4micron," Health Phys. 79, 431-440 (2000).
[CrossRef] [PubMed]

G. C. de Wit, "Safety norms for Maxwellian view laser scanning devices based on the ANSI standards," Health Phys. 71, 766-769 (1996).
[CrossRef] [PubMed]

International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3microns)," Health Phys. 73, 539-554 (1997).
[PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, "What is the meaning of threshold in laser injury experiments? Implications for human exposure limits," Health Phys. 82, 335-347 (2002).
[CrossRef] [PubMed]

J. W. Ness, H. Zwick, B. E. Stuck, D. J. Lund, B. J. Lund,J. W. Molchany, and D. H. Sliney, "Retinal image motion during deliberate fixation: implications to laser safety for long duration viewing," Health Phys. 78, 131-142 (2000).
[CrossRef] [PubMed]

U. Klingbeil, "Safety aspects of laser scanning ophthalmoscopes," Health Phys. 51, 81-93 (1986).
[CrossRef] [PubMed]

L. Li and J. S. Rosenshein, "Safety considerations for simultaneous multiple wavelength exposure in scanning laser ophthalmoscopes," Health Phys. 64, 170-177 (1993).
[CrossRef] [PubMed]

T. L. Lyon, "Hazard analysis technique for multiple wavelength lasers," Health Phys. 49, 221-226 (1985).
[CrossRef] [PubMed]

W. Roach, R. Thomas, G. Buffington, G. Polhamus, J. Notabartolo, C. DiCarlo, K. Stockton, D. Stolarski, K. Schuster, V. Carothers, B. Rockwell, and C. Cain, "Simultaneous exposure using 532 and 860nm lasers for visible lesion thresholds in the rhesus retina," Health Phys. 90, 241-249 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, "Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells," Invest. Ophthalmol. Visual Sci. 25, 195-200 (1984).

J. Biomed. Opt.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, "Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells," J. Biomed. Opt. 11, 010501 (2006).
[CrossRef] [PubMed]

J. Laser Appl.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, "A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American National Standard for Safe Use of Lasers," J. Laser Appl. 13, 134-140 (2001).
[CrossRef]

J. A. Zuclich, D. J. Lund, P. R. Edsall, R. C. Hollins, P. A. Smith, B. E. Stuck, L. N. McLin, and S. Till, "Variation of laser-induced retinal damage threshold with retinal image size," J. Laser Appl. 12, 74-80 (2000).
[CrossRef]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, "Ultrashort laser pulse bioeffects and safety," J. Laser Appl. 11, 42-44 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Lasers Life Sci.

D. E. Freund, R. L. McCally, R. A. Farrel, and D. H. Sliney, "A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and Gaussian beams," Lasers Life Sci. 7, 71-89 (1996).

D. E. Freund and D. H. Sliney, "Dependence of retinal model temperature calculations on beam shape and absorption coefficients," Lasers Life Sci. 8, 229-247 (1999).

Mil. Med.

E. S. Beatrice, D. I. Randolph, H. Zwick, B. E. Stuck, and D. J. Lund, "Laser hazards: biomedical threshold level investigations," Mil. Med. 142, 889-891 (1977).
[PubMed]

Nonlinear Opt.

D. H. Sliney, "Retinal injury from laser radiation," Nonlinear Opt. 21, 1-17 (1999).

Ophthalmology

M. A. Mainster, W. T. Ham, Jr., and F. C. Delori, "Potential retinal hazards. Instrument and environmental light sources," Ophthalmology 90, 927-932 (1983).
[PubMed]

Opt. Express

Proc. SPIE

D. J. Lund, K. Schulmeister, B. Seiser, and F. Edthofer, "Laser-induced retinal injury thresholds: variation with retinal irradiated area," Proc. SPIE 5688, 469-478 (2005).
[CrossRef]

Vision Res.

F. C. Delori, J. S. Parker, and M. A. Mainster, "Light levels in fundus photography and fluorescein angiography," Vision Res. 20, 1099-1104 (1980).
[CrossRef] [PubMed]

A. A. Skavenski, D. A. Robinson, R. M. Steinman, and G. T. Timberlake, "Miniature eye movements of fixation in rhesus monkey," Vision Res. 15, 1269-1273 (1975).
[CrossRef] [PubMed]

D. H. Sliney and M. L. Wolborsht, "Safety standards and measurement techniques for high intensity light sources," Vision Res. 20, 1133-1141 (1980).
[CrossRef] [PubMed]

Other

S. A. Burns and R. H. Webb, "Optical generation of the visual stimulus," in Handbook of Optics, M.Bass, E.W.van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1994), pp. 1-28.

CJ is not explicitly named in the Standard but was included here to reflect a factor-2 discontinuity in the Standard: MPHc's in the 700-1050nm range are 2 times smaller than those in the corresponding 1050-1400nm range.

For application of rule 3, the MP radiant exposure for cell 3 of Table applies to an exposure duration as short as 100fs (the limit of the Standard). This is because the formulation of rule 3 predates the introduction of the more conservative thermoacoustic limits (cells 1 and 2, Table ).

Commercially available SLO's are manufactured by Heidelberg Engineering (Heideberg, Germany) and by Confocal Technologies (Buena Vista, Virginia).

ANSI, "American National Standard for safe use of lasers (ANSI 136.1)," ANSI 136.1-2000 (The Laser Institute of America, 2000).

ACGIH, American Conference of Governmental Industrial Hygienists; TLVs and BEIs (ACGIH, 2005).

International Electrotechnical Commission (IEC), "Safety of laser products," IEC 60825 (IEC, 2001).

Health Council of the Netherlands (HCN), "Health based exposure limits for electromagnetic radiation in the wavelength range from 100nanometre to 1millimetre," (HCN, 1993).

D. J. Lund, "Action spectrum for retinal thermal damage," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 209-228.

Thermal confinement occurs when the energy is delivered so rapidly that the energy absorbed in the relaxation volume of irradiated tissue is not changed by heat flow. The "thermal confinement duration" (tmin) is the duration during which confinement is assumed to occur. This duration increases with the wavelength because the relaxation volume of irradiated tissue is increased (stronger penetration of light in the deeper layers of the fundus). The duration tmin is very small when the relaxation volume is small (both in the UV and the IR) when penetration into tissue is small (skin).

W. T. J. Ham and H. A. Mueller, "The photopathology and nature of the blue light and near-UV retinal lesions produced by lasers and other optical sources," in Laser Applications in Medicine and Biology, M.L.Wolbarsht, ed. (Plenum, 1989), pp. 191-246.
[CrossRef]

B. E. Stuck, "The retina and action spectrum for pnotoretintis," in Measurements of Optical Radiation Hazards, R.Matthes and D.Sliney, eds. (International Commission on Non-Ionizing Optical Radiation, 1998), pp. 193-208.

D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, 1980), p. 469.

The pupil factor P is not used explicitly in the Standard. For 400≥λ≥600nm and t≥0.7s, the pupil diameter is assumed to be 3mm, and the factor P is (7/3)2=5.44 (cell b; rounded down to 5.4 in the Standard). The Standard provides interpolations that we translated in Table (upper part): between 0.07s and 0.7s (cell a) and between 600 and 700nm (cell d). We added an interpolation for the combined interval 0.07≤t≤0.7s and 400≥λ≥600nm that was not covered in the Standard (cell c); P is then the product of the values in cells a and d, divided by 5.44.

The discrepancy comes from reducing the source radiance from 100CBJcm−2sr−1 (ANSI Table 5b) to 20CBJcm−2sr−1 [ANSI Section 8.3(1)], and thus a factor of 5, to account for change in the pupil diameter instead of a factor 5.44 [ANSI Section 8.3(2)].

Extrapolation of the MPΦ from cell 7 (Table ) toward shorter exposure durations intersects the MPΦ from cell 4a at a duration tex=2.75×10−3(CBα)1.33. The shortest value for tex occurs for CB=1(400<λ<450nm) and α=1.5mrad and equals 4.7ms.

The IEC laser safety Standards defines CE differently from the ANSI Standard for large sources (CE,IEC=αmax/αmin for all α>αmax). The reason is that the IEC Standard emphasizes measurements and requires one to measure only the power or energy arriving within a cone angle of αmax; hence, CE is constant for larger angles. However, the ANSI Standard emphasizes calculations rather than measurements and therefore provides an ever-increasing CE for angles increasing beyond αmax.

For a circular area with α≥αmax exposed with a radiant power Φtotal, the power Φin within a cone of angle αmax[Φin=(αmax/α)2Φtotal] is compared with the MPΦin calculated using CE=αmax/αmin. The factor CE is thus essentially replaced by (α/αmax)2(αmax/αmin)=(α2/αminαmax), identical to the value of CE for α≥αmax already incorporated into the Standard (Table II[a]). The method of "ignoring the power outside an αmax-cone" is identical to proper application of the current Standard for circular fields.

ANSI, "American National Standard for safe use of lasers (ANSI 136.1)," ANSI 136.1-1993 (Revision of ANSI 136.1-1986) (The Laser Institute of America, 1993).

Drafts of the ANSI 2005 Standard reveal no substantial changes in Table 5a and 5b of the current Standard, in the definition of parameters (CE,CA,CC,CB,T2,γ,P,tmin) in Section 8.3 ("Special Qualifications for Ocular Exposures"), and some clarifications in the assessment of exposures by repetitive pulses. Table and paragraph numbers remain the same. Among many other changes, the new Standard contains revised and modified definitions of parameters and a drastic revision in the classification of lasers.

Class 1 lasers are those that cannot emit radiation in excess of the MP level for exposure durations longer than 2.7h(104s). There is no hazard. Class 2 lasers are those that cannot emit radiation in excess of the MP level (400-700nm) for exposure durations longer than 0.25s (aversion reflex). See ANSI Standard for complete classification.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

W.H.A. Rushton, "Visual pigments in man," in Handbook of Sensory Physiology, H. J. A.Dartnall, ed. (Springer-Verlag, 1972), pp. 364-394.
[CrossRef]

We have developed such programs written in an Excel spreadsheet (Microsoft, Mac, or PC). We will share this program with interested individuals only if they assume full responsibility for its use . If interested, contact F. C. Delori by e-mail at francois.delori@schepens.harvard.edu. Individuals can also write their own. However, be aware of small discrepancies in Tables to between the limits or parameters given in neighboring cells. For example, In Table , there is a 5% difference between the MPHc's given on the left and right sides of the α=γ line. In Table (lower part), there is a 4% difference between the pupil factor P given in cells 1 and 2 (at t=0.7s).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Modes of illumination of the retina. (a) Free- or Newtonian-illumination condition where the pupil of the eye is overfilled by the incident light. (b) Maxwellian illumination frequently used in ophthalmic devices where the incident illumination occupies a small fraction of the pupil.

Fig. 2
Fig. 2

Maximum permissible radiant power MP as a function of exposure duration t for different wavelengths and for the visual angles of α m i n = 1.5 mrad and α m a x = 100 mrad , and for an intermediate angle of 1 ° ( 17.5 mrad ) . Slanted lines are lines of constant radiant energy entering the pupil. Circled numbers in (b) indicate the different exposure duration intervals corresponding with the cells of Table 3. Intervals 1 and 2 contain the M P Φ ’s for thermoacoustic damage (lower MP energies than at longer exposure durations), interval 3 corresponds with thermal damage where thermal dissipation does not occur within the exposure duration (constant energy), intervals 4a and 4b are for thermal damage where dissipation can occur within the exposure duration ( t 0.25 dependence). Interval 7 includes the photochemical limits M P Φ ’s (constant energy). Small circles indicate the points where the photochemical and thermal limits are equal (the thermal M P Φ at long durations are those of λ = 600 nm ). The influence of the pupil factor P (pupil assumption) can be seen for durations longer than 0.07 s and for wavelengths shorter than 700 nm .

Fig. 3
Fig. 3

Photopic retinal illuminances for which the exposure safety limit is reached, as a function of wavelength, for exposure durations of 30 and 300 s . Retinal illuminances were calculated using Eq. (13) from the MP retinal irradiance given in the notes of Table 3 ( ) for visual angles larger than 5.7 ° . The limits would be higher (more safe) for smaller visual angles. The dots indicate the longest wavelength at which the photochemical limit was the limiting factor. The scale on the right shows the level of bleaching of the cone photoreceptors, calculated for the 300 s exposure using Rushton’s data.[48]

Fig. 4
Fig. 4

Maximum permissible radiant power M P Φ as a function of exposure duration t (for λ = 488 nm and α = 53 mrad , in this example). The circled numbers correspond to the different time intervals and cell numbers of Table 3. Point A represents the radiant power ( 450 μ W ) and exposure duration ( 180 ms ) of the example in Subsection 6G. Point B is at the MP Φ at that exposure duration, and point C is at the MP exposure duration for 450 μ W (to assess MP duration after shutter failure).

Fig. 5
Fig. 5

(a) Maximum permissible radiant exposure as a function of exposure duration (Table 1). For repetitive pulse exposures, rule 3 essentially uses the limits of cells 3 and 4 (hatched line); the constant M P H c [ t m i n ] is assumed to extend 10 13 s to t m i n .[52, 53] (b) Pulse trains illustrating the Standard’s statement that “pulses delivered in less than t m i n are treated as a single pulse.” If one or more pulses occur within the time-interval of t m i n , as shown by pulse trains 2, 3, and 4, then the MP level for that subgroup of k pulses ( k 1 ; total energy k H c , 1 ) is M P H c [ t m i n ] . Indeed, as seen in (a), the M P H c for t t m i n is independent of exposure duration and is equal to M P H c [ t m i n ] . In terms of light safety, the subgroup is thus equivalent to a “single pulse” with any pulse duration between and including 100 fs and t m i n .[53] We select the duration t m i n as the duration for the “single pulse,” as indicated by shaded pulses.

Fig. 6
Fig. 6

Maximum permissible average radiant power M P Φ a ν versus the pulse repetition frequency F, illustrating the applicability of the three ANSI rules when t 1 is smaller than t m i n (cells b and e, Table 5). For low F, the M P Φ a ν of rule 3 increases with F (slope F 0.75 ) and is always smaller than the thermal M P Φ a ν of rule 2 (shown only for the full range for λ = 700 nm ). For shorter wavelengths ( λ = 450 nm ) , the photochemical limit of rule 2 becomes the limiting factor for F < F c r if F is high enough ( F > 1 kHz ) . For high F, rule 2 is the only limiting factor (thermal or photochemical limits). The line marked with * (not drawn fully to avoid confusion) is that for rule 1 if t 1 were in the 100 fs to 10 ps duration range. It is 33 times lower than the other line for rule 1. It demonstrates graphically that rule 1 can yield the lowest M P Φ a ν and that it must be tested if t 1 < 1 ns (as indicated in Table 5).

Fig. 7
Fig. 7

Maximum permissible beam power (in mW) for SLOs as a function of the visual angle subtending the side of the square field for an exposure duration of 300 s , for frame rates of 30 and 5 images/s (512 raster lines), and for different wavelengths (as shown). For each wavelength, the plots show the lowest of the MP powers corresponding to the different simulated exposures (see text). Solid curves, MP power corresponding to the pulsed exposure of a raster-line segment. Dashed lines, MP power, computed for the photochemical limits, for a CW beam uniformly distributed over the entire field. Double lines, MP power, computed for the thermal limits, corresponding to a CW beam uniformly distributed over the entire field.

Tables (5)

Tables Icon

Table 1 Maximum Permissible Radiant Exposure M P H c (in J cm 2 ) at the Cornea (Overfilling Pupil)

Tables Icon

Table 2 Parameters to be Used in Tables 1 and 3

Tables Icon

Table 3 Maximum Permissible Radiant Power M P Φ (in watts) Entering the Natural or Dilated Pupil

Tables Icon

Table 4 Effective C E Used in Evaluating the M P Φ for Exposures in Rectangular Areas

Tables Icon

Table 5 Repetitive Pulses (Evenly Spaced Pulse of Equal Energy/Pulse)

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

α = 2 tan 1 d r 2 f e d r f e .
A r e t i n a π 4 ( f e α ) 2 .
H c = L s Ω π 4 L s α 2 ,
H r = H c A p u p i l A r e t i n a H c τ d p 2 f e 2 α 2 ,
H r = L s τ π 4 ( d p f e ) 2 .
H r = 4 π ( f e α ) 2 τ Φ .
M P H c , E x t S o u r c e = C E × M P H c , S m a l l S o u r c e .
M P H c , t h e r m a l = 1.8 × 10 3 × C T × C E × T 2 0.25 × t = 1.27 J cm 2 ,
M P H C , p h o t o c h e m i c a l = 7.85 × 10 5 × C B × α 2 = 8.57 J cm 2 ,
M P Φ = M P H c [ A p , 7 P ] 1 t .
Φ < M P Φ = M P Φ S m a l l S o u r c e × [ α 2 α m i n α m a x ] ,
E r < M P E r = M P Φ S m a l l S o u r c e ( π 4 ) f e 2 1 α m i n α m a x .
M P Φ = M P Φ S m a l l S o u r c e × C E [ α = α e q ] × A r e a o f n o n c i r c u l a r f i e l d A r e a o f c i r c l e s u b t e n d e d b y α e q .
C E = C E [ α = α e q ] × A r e a o f n o n c i r c u l a r f i e l d A r e a o f c i r c l e s u b t e n d e d b y α e q .
Photopic illuminance ( trolands ) = 1.97 × 10 9 V p h , λ E r ,
M P Φ = { 6.93 × 10 4 C T C E P 1 t 0.25 } = 19 mW ,
M P Φ = 450 × 10 6 = { 5.59 × 10 6 C B α 2 t 1 } = 8.7 × 10 2 t 1 W ,
M P E r = { 2.04 C T P 1 t 0.25 } = 1.69 t 0.25 = 0.6 W cm 2 ,
Φ a v = Q 1 F = Φ 1 δ .
M P H c , 1 = M P H c [ n t 1 ] n = n 0.75 M P H c [ t 1 ] n = n 0.25 M P H c [ t 1 ] ,
M P H c , 1 = M P H c [ n t 1 ] n = ( n t 1 T ) 0.75 M P H c [ T ] n = δ 0.75 M P H c [ T ] n .
M P Φ a v , 2 = M P Φ [ T ] = { 5.56 × 10 6 C B α 2 T 1 } = 1.51 × 10 4 W ,
M P Φ a v , 3 = n 0.25 δ M P Φ t h [ t 1 ] = n 0.25 δ m i n { 6.93 × 10 4 C T C E ( t m i n ) 0.25 } = 1.01 × 10 3 W ,
M P Φ a v , 1 = δ M P Φ [ t 1 ] = δ { 5.78 × 10 9 C T C J C E t 1 1 } = 9.26 × 10 1 W ,
M P Φ a v , 2 = M P Φ [ T ] = { 6.93 × 10 4 C T C E T 0.25 } = 1.23 × 10 2 W ,
M P Φ a v , 2 = M P Φ [ T ] = { 1.93 × 10 7 C T C J C E T 1 } = 2.29 W .
M P Φ B , C W , t h = { 6.93 × 10 4 C T ( 4 α F π α m i n ) P 300 1 t 0.25 } = 1.41 × 10 4 C T P 300 1 α F ,
M P Φ B , C W , t h = { 6.93 × 10 4 C T ( 4 α F 2 π α m a x α m i n ) P 300 1 t 0.25 } = 1.41 × 10 6 C T P 300 1 α F 2 .
M P Φ B , C W , p h = { 5.56 × 10 6 C B 4 π α F 2 t 1 } = 2.36 × 10 8 C B α F 2 .
M P Φ B , P L S = M P Φ a v δ = n 0.25 δ * δ { 6.93 × 10 4 C T C E t 1 0.25 } ,
M P Φ B , P L S = 4.01 × 10 5 F 0.75 C T α F ( 1 + 0.0061 × α F F ) ,
M P Φ B , P L S = 5.92 × 10 7 F 0.75 C T α F .
Φ λ 1 M P Φ [ λ 1 ] + Φ λ 2 M P Φ [ λ 2 ] + < 1 .
400 1400 ϕ ( λ ) M P Φ ( λ ) Δ λ < 1 or 400 1400 ϕ ( λ ) C T ( λ ) C J ( λ ) P ( λ ) 1 Δ λ < M P Φ ( 700 ) ,
400 1400 ϕ ( λ ) C B ( λ ) Δ λ < M P Φ ( 450 ) .

Metrics