Abstract

The coherent anti-Stokes Raman scattering (CARS) signal is calculated as a function of focal-field distributions with engineered phase jumps. We show that the focal fields in CARS microscopy can be shaped such that the signal from the bulk is suppressed in the forward detection mode. We present the field distributions that display enhanced sensitivity to vibrationally resonant object interfaces in the lateral dimension. The use of focus-engineered CARS provides a simple means to detect chemical edges against the strong background signals from the bulk.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
    [CrossRef]
  3. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
    [CrossRef] [PubMed]
  4. X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
    [CrossRef] [PubMed]
  5. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
    [CrossRef]
  6. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  7. E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
    [CrossRef]
  8. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Nonlinear coherent four-wave mixing in optical microscopy," J. Opt. Soc. Am. B 17, 1678-1684 (2000).
    [CrossRef]
  9. J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
    [CrossRef]
  10. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
    [CrossRef]
  11. A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
    [CrossRef]
  12. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  13. S. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  14. T. A. Klar and S. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999).
    [CrossRef]
  15. S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
    [CrossRef]
  16. A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
    [CrossRef] [PubMed]
  17. M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002).
    [CrossRef] [PubMed]
  18. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005).
    [CrossRef] [PubMed]
  19. W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, and J. Greve, "Waveguide CARS spectroscopy: a new method for background suppression, using dielectric layers as a model," Appl. Spectrosc. 47, 723-730 (1993).
    [CrossRef]
  20. J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978).
    [CrossRef]
  21. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1325 (1997).
    [CrossRef]
  22. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
    [CrossRef] [PubMed]
  23. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000).
    [CrossRef]
  24. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
    [CrossRef] [PubMed]
  25. J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998).
    [CrossRef] [PubMed]
  26. D. Yelin and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Opt. Express 5, 169-175 (1999).
    [CrossRef] [PubMed]
  27. D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
    [CrossRef]
  28. L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
    [CrossRef]
  29. V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
    [CrossRef]
  30. E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
    [CrossRef]
  31. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  32. R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).
  33. T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995).
    [CrossRef]
  34. P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
    [CrossRef]
  35. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
    [CrossRef] [PubMed]
  36. E. Y. S. Yew and C. J. R. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006).
    [CrossRef] [PubMed]
  37. J.-X. Cheng and X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002).
    [CrossRef]

2006

X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
[CrossRef] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

E. Y. S. Yew and C. J. R. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006).
[CrossRef] [PubMed]

2005

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

2004

2003

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

2002

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002).
[CrossRef]

2001

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
[CrossRef]

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

2000

1999

D. Yelin and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Opt. Express 5, 169-175 (1999).
[CrossRef] [PubMed]

T. A. Klar and S. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

1998

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998).
[CrossRef] [PubMed]

1997

P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
[CrossRef]

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1325 (1997).
[CrossRef]

1995

T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995).
[CrossRef]

1994

1993

1992

S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

1983

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

1978

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978).
[CrossRef]

1959

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Alfano, R. R.

Bachor, H.-A.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Beaurepaire, E.

Bernet, S.

Blanchard-Desce, M.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000).
[CrossRef]

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998).
[CrossRef] [PubMed]

Buchler, B. C.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Charpak, S.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

Cheng, J.-X.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
[CrossRef]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

de Boeij, W. P.

de Doncker-Kapenga, E.

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

Débarre, D.

Delaubert, V.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Dyba, M.

M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

Egner, A.

A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Engel, E.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

Farge, E.

Fu, Y.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Fürhapter, S.

Gannaway, J. N.

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978).
[CrossRef]

Greve, J.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, and J. Greve, "Waveguide CARS spectroscopy: a new method for background suppression, using dielectric layers as a model," Appl. Spectrosc. 47, 723-730 (1993).
[CrossRef]

Guo, Y.

Harris, D.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Hell, S.

Hell, S. W.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

Higdon, P.

P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
[CrossRef]

Ho, P. P.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Huse, N.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

Jakobs, S.

A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Jesacher, A.

Juskaitis, R.

P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
[CrossRef]

Kahaner, D. K.

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

Kanger, J. S.

Klar, T. A.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

T. A. Klar and S. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999).
[CrossRef]

Kruglik, S. G.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

Lam, P. K.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Lewis, A.

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

Liu, F.

Loew, L. M.

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Lucassen, G. W.

McClelland, D. E.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Mertz, J.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000).
[CrossRef]

Moreaux, L.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000).
[CrossRef]

Moulia, B.

Müller, M.

J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Nan, X.

X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Otto, C.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, and J. Greve, "Waveguide CARS spectroscopy: a new method for background suppression, using dielectric layers as a model," Appl. Spectrosc. 47, 723-730 (1993).
[CrossRef]

Piessens, R.

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

Potma, E. O.

X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Nonlinear coherent four-wave mixing in optical microscopy," J. Opt. Soc. Am. B 17, 1678-1684 (2000).
[CrossRef]

Puoris'haag, M.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Ritsch-Marte, M.

Sacks, P.

Sánchez, E. J.

L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Sandre, O.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000).
[CrossRef]

Savage, H.

Schanne-Klein, M.-C.

Schantz, S.

Shaddock, D. A.

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

Sheppard, C. J. R.

E. Y. S. Yew and C. J. R. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006).
[CrossRef] [PubMed]

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978).
[CrossRef]

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Silberberg, Y.

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Squier, J. A.

Stelzer, E. H. K.

S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

Supatto, W.

Tan, J. B.

T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995).
[CrossRef]

Uberhuber, C. W.

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

Volkmer, A.

J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Voroshilov, A.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

Wang, H.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Wei, M.

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Wichmann, J.

Wiersma, D. A.

Wilson, K. R.

J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Wilson, T.

P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
[CrossRef]

T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Xie, X. S.

X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Yelin, D.

Yew, E. Y. S.

Zhadin, N.

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. B

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

Appl. Spectrosc.

Biophys. J.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

J. Microsc.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995).
[CrossRef]

P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997).
[CrossRef]

J. Opt. A

V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

J. Raman Spectrosc.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001).
[CrossRef]

E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003).
[CrossRef]

Opt. Commun.

S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978).
[CrossRef]

Phys. Rev. Lett.

M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef]

A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Ultramicroscopy

L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998).
[CrossRef]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simple sketch of CARS generation showing the y z cross section of the excitation volume. O O ¯ represents the optical axis with O being the origin of the coordinate system and also the center of the focal volume, and O being a far-field point on the optical axis. The coordinates of the points in the near field are represented by ( x , y , z ) and those of the points in the far field by ( X , Y , Z ) in the Cartesian coordinate system. The outgoing arrows around the near-field points represent the CARS waves generated due to the local excitation, and the incoming arrows at the far-field points ( O and Q) represent the contribution of the electric field amplitudes from the individual points in the excitation volume.

Fig. 2
Fig. 2

x component of the focal amplitude distribution (left column) and the phase distribution (right column) of the Stokes beam with input HG00 mode, (a) and (b); HG01 mode, (c) and (d); HG10 mode, (e) and (f); and LG01 mode, (g) and (h). The size of each image is 3 μ m × 3 μ m . The gray values in the amplitude images are normalized with respect to that of the HG00 mode. The gray tone representation for the phase distribution is chosen such that the difference between the white and the black gray values is π rad in (b), (d), and (f) and 2 π rad in (g).

Fig. 3
Fig. 3

Sketch of the objects being investigated: (a) an interface parallel to the y axis denoted as E , (b) interface perpendicular to the y axis denoted as E , (c) right-angled corner with the edges being parallel and perpendicular to the y axis, (d) spherical particle of radius r = 500 nm embedded in the bulk. χ 1 and χ 2 are the third-order nonlinear susceptibilities of the indicated regions and are assumed to be χ 1 = 2 + 5 i , and χ 2 = 2 under the on-resonant condition. All the objects are assumed to be transparent and nonreflecting. (e) Assumed spectral dependence of χ 1 —the solid curve: CARS spectrum, and the dashed curve: Raman spectrum.

Fig. 4
Fig. 4

Comparing the far-field CARS radiation pattern from the bulk, (a) and (b); the E , interface, (c) and (d); and the E interface, (e) and (f) under conventional excitation (left column) and HG01 excitation (right column); θ and ϕ are the polar and the azimuthal angles. The directions ϕ = 0 and ϕ = 90 ° correspond to the positive x and y directions. The acceptance angle of detection, θ max = 10 ° , is indicated in (e).

Fig. 5
Fig. 5

(a) Far-field CARS intensity profiles obtained by scanning the HG01 excitation spot along the y axis across the E interface (solid curve) and along the x axis across the E interface (dashed curve) with the acceptance angle of detection being 10°. (b) Dependence of the CARS intensity of the E interface on the acceptance angle θ max under HG01 excitation.

Fig. 6
Fig. 6

CARS images of a right-angled corner (left column) and a resonant spherical bead of radius 500 nm (right column). Conventional excitation, images (a) and (b); HG01 excitation, images (c) and (d); HG10 excitation, images (e) and (f); LG01 excitation, images (g) and (h). The image size is 3 μ m × 3 μ m ; the thin dotted lines in each image indicate the interface. The gray values of the images are normalized with respect to that of the conventional image in the corresponding column, and the respective normalization factors are indicated in the captions.

Fig. 7
Fig. 7

(a) Spectral dependence of the intensity profiles of a bead of radius 500 nm under LG01 excitation. (b) The spectral variation of the output intensity at the circumference of the particle whose nonresonant susceptibility is the same as that of the bulk medium—the solid curve corresponds to conventional excitation, and the dashed curve corresponds to LG01 excitation. Note the change in the output spectral characteristics by a mere change of the spatial field distribution of the excitation.

Fig. 8
Fig. 8

(a) Comparison of the CARS intensity profiles of the E interface under HG01 excitation with incoherent (solid curve) and coherent (dashed curve) detection schemes; θ max = 10 ° . (b) Dependence of the CARS intensity of the E interface on the acceptance angle θ max under HG01 excitation employing the coherent detection scheme.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P c i ( r ) = j , k , l χ i j k l ( 3 ) ( r ) E p j ( r ) E p k ( r ) E S l * ( r ) ,
E ( R ) = V e i k c R r 4 π R r 3 ( R r ) × [ ( R r ) × P c ( r ) ] d 3 r ,
E 00 = E 0 e i k f ( I 00 + I 02 cos 2 ϕ I 02 sin 2 ϕ 2 i I 01 cos ϕ ) ,
E 01 = E 0 e i k f ( i I 11 cos ϕ + i I 14 cos 3 ϕ i I 12 sin ϕ + i I 14 sin 3 ϕ 2 I 10 + 2 I 13 cos 2 ϕ ) ,
E 10 = E 0 e i k f ( i ( I 11 + 2 I 12 ) sin ϕ + i I 14 sin 3 ϕ i I 12 cos ϕ i I 14 cos 3 ϕ 2 I 13 sin 2 ϕ ) ,
I m n ( ρ , z ) = 0 θ max f w ( θ ) cos θ g m n ( θ ) J l ( k ρ sin θ ) e i k z cos θ sin θ d θ ,
χ 1 = χ n r + G ω p ω S ω R + i Γ R ,
I A B χ 2 ± χ 1 e i [ ϕ 1 + k c d ( Y Z ) ] 2 χ 1 2 + χ 2 2 ± 2 χ 1 χ 2 cos ( ϕ 1 + k c d Y Z ) ,

Metrics