Abstract

We investigate the global integration of local motion direction signals in amblyopia, in a task where performance is equated between normal and amblyopic eyes at the single element level. We use an equivalent noise model to derive the parameters of internal noise and number of samples, both of which we show are normal in amblyopia for this task. This result is in apparent conflict with a previous study in amblyopes showing that global motion processing is defective in global coherence tasks [Vision Res. 43, 729 (2003) ]. A similar discrepancy between the normalcy of signal integration [Vision Res. 44, 2955 (2004) ] and anomalous global coherence form processing has also been reported [Vision Res. 45, 449 (2005) ]. We suggest that these discrepancies for form and motion processing in amblyopia point to a selective problem in separating signal from noise in the typical global coherence task.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).
  2. A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
    [PubMed]
  3. A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
    [PubMed]
  4. J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.
  5. J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
    [CrossRef] [PubMed]
  6. R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992).
    [CrossRef]
  7. W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
    [PubMed]
  8. P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994).
    [CrossRef]
  9. K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999).
    [CrossRef] [PubMed]
  10. K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
    [CrossRef] [PubMed]
  11. C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
    [PubMed]
  12. A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
    [CrossRef] [PubMed]
  13. D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
    [CrossRef] [PubMed]
  14. J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
    [PubMed]
  15. J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
    [CrossRef] [PubMed]
  16. P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
    [CrossRef] [PubMed]
  17. A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
    [CrossRef] [PubMed]
  18. O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
    [CrossRef] [PubMed]
  19. M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).
  20. R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
    [CrossRef] [PubMed]
  21. R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
    [CrossRef] [PubMed]
  22. R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
    [CrossRef] [PubMed]
  23. D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
    [CrossRef]
  24. D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
    [CrossRef]
  25. D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
    [CrossRef] [PubMed]
  26. R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981).
    [CrossRef]
  27. F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001).
    [CrossRef]
  28. F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
    [CrossRef]
  29. S. C. Dakin, "Information limit on the spatial integration of local orientation signals," J. Opt. Soc. Am. A 18, 1016-1026 (2001).
    [CrossRef]
  30. B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
    [CrossRef] [PubMed]
  31. B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.
  32. A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
    [CrossRef]
  33. B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
    [CrossRef] [PubMed]
  34. O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
    [CrossRef] [PubMed]
  35. B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
    [CrossRef]

2005 (3)

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
[CrossRef] [PubMed]

B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
[CrossRef]

2004 (1)

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

2003 (3)

O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

2002 (2)

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

2001 (3)

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

S. C. Dakin, "Information limit on the spatial integration of local orientation signals," J. Opt. Soc. Am. A 18, 1016-1026 (2001).
[CrossRef]

2000 (3)

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999).
[CrossRef] [PubMed]

1997 (3)

R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
[CrossRef] [PubMed]

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

1995 (1)

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

1994 (1)

P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994).
[CrossRef]

1992 (1)

R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992).
[CrossRef]

1991 (2)

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

1988 (1)

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

1986 (2)

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
[PubMed]

1985 (2)

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
[CrossRef] [PubMed]

1981 (2)

R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981).
[CrossRef]

R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
[CrossRef] [PubMed]

1977 (2)

M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

1968 (1)

D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).

Adelson, E. H.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Allen, H. A.

B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
[CrossRef] [PubMed]

B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.

Allman, J.

J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
[CrossRef] [PubMed]

Andrews, D.

R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981).
[CrossRef]

Andrews, R.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

Anker, S.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

Atkinson, J.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
[CrossRef] [PubMed]

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Baker, C. L.

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

Bex, P. J.

R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
[CrossRef] [PubMed]

Born, R. T.

R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992).
[CrossRef]

Braddick, J.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

Braddick, O. J.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
[CrossRef] [PubMed]

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

Brar, S.

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

Brent, H. P.

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

Cioni, G.

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

Cornelissen, P.

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

Cory, E.

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

Curran, W.

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

Dakin, S. C.

B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

S. C. Dakin, "Information limit on the spatial integration of local orientation signals," J. Opt. Soc. Am. A 18, 1016-1026 (2001).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.

Demanins, R.

R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
[CrossRef] [PubMed]

Ehrt, O.

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

Ellemberg, D.

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

Fowler, S.

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

France, T. D.

R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
[CrossRef] [PubMed]

Gizzi, M. S.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Gunn, A.

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

Guzzetta, A.

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

Harwerth, R. S.

M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).

Hess, R. F.

B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
[CrossRef] [PubMed]

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
[CrossRef] [PubMed]

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.

Hill, N. J.

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Howell, E. R.

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).

Lauwers, K.

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

Ledgeway, T.

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

Lee, K. M.

P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994).
[CrossRef]

Levi, M.

M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).

Lewis, T. L.

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

Mansouri, B.

B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
[CrossRef] [PubMed]

B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.

Mason, A.

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

Maurer, D.

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

McGraw, P. V.

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

McGuinness, E.

J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
[CrossRef] [PubMed]

Miezin, F.

J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
[CrossRef] [PubMed]

Mikami, A.

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
[PubMed]

Movshon, J. A.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

Newsome, W. T.

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
[PubMed]

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

O'Brien, J.

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

O'Brien, J. M.

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Orban, G. A.

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

Pare, E. B.

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

Pasternak, T.

K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Richardson, A.

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

Riggs, K.

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

Rudolph, K.

K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999).
[CrossRef] [PubMed]

Schiller, P. H.

P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994).
[CrossRef]

Simmers, A. J.

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

Sounders, R.

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

Spencer, J.

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

Stein, J.

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

Tootell, R. B.

R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992).
[CrossRef]

Tulunay-Keesey, U.

R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
[CrossRef] [PubMed]

Turner, R.

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Vandenbussche, E.

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

Vogels, R.

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

Watt, R. J.

R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981).
[CrossRef]

Wattam-Bell, J.

O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
[CrossRef] [PubMed]

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Weisel, T. N.

D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).

Wichmann, F. A.

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Wurtz, R. H.

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
[PubMed]

Zhang, L.

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Zihl, J.

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

Cereb. Cortex (1)

K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999).
[CrossRef] [PubMed]

Curr. Biol. (1)

O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000).
[CrossRef] [PubMed]

Curr. Psychol. Rev. (1)

R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981).
[CrossRef]

Dev. Neuropsychol. (1)

J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003).
[PubMed]

Exp. Brain Res. (1)

R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).

J. Comp. Neurol. (1)

K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000).
[CrossRef] [PubMed]

J. Neurophysiol. (2)

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986).
[PubMed]

A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986).
[PubMed]

J. Neurosci. (2)

C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991).
[PubMed]

W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988).
[PubMed]

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).

Nature (London) (1)

R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992).
[CrossRef]

Neuropsychologia (1)

O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003).
[CrossRef] [PubMed]

NeuroReport (2)

A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002).
[CrossRef] [PubMed]

J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Perception (1)

J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985).
[CrossRef] [PubMed]

Spatial Vis. (2)

D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997).
[CrossRef]

D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997).
[CrossRef]

Vision Res. (9)

D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005).
[CrossRef]

B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005).
[CrossRef] [PubMed]

A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003).
[CrossRef] [PubMed]

D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002).
[CrossRef] [PubMed]

P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995).
[CrossRef] [PubMed]

R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997).
[CrossRef] [PubMed]

Visual Neurosci. (1)

P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994).
[CrossRef]

Other (2)

J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.

B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustrations of stimuli used in the experiment. Arrays of 128 randomly positioned, moving blobs were presented in a 6° circle at the center of the screen. The size of a single blob is magnified in (a) for illustration only. The blobs were moving upward and to left or right of vertical. The direction of each element is a sample from a Gaussian distribution of directions with average equal to the cue direction (i.e., 90°± the cue generated by APE) and a variable bandwidth. The white arrows [in (b)–(d)] schematically represent the directions of the blobs. In (b), (c), and (d) the average directions are tilted to right of vertical and the SDs of the stimuli arrays are 0°, 12°, and 30°, respectively.

Fig. 2
Fig. 2

Matching local direction discrimination in (a) one normal and (b)–(d) three amblyopic observers. The amblyopic categories consisted of (b) deprived amblyopia, (c) strabismic amblyopia, and (d) anisometropic amblyopia. The X axis is the contrast of the stimuli, and the Y axis is the threshold direction offset for a single moving element. In (a) the open circles and the solid curve represent data for the DE at various contrasts (10%–50%) for one normal observer, and the solid circle for represents the data point for the NDE at 25% contrast. As the contrast of the stimuli decreases, the discrimination threshold increases for the DE. At 25% contrast the thresholds on both eyes are statistically the same (95% CI, p > 0.05 ). In (b)–(d) the open circles and the solid curves represent the data for FFEs. The solid circles represent the thresholds for AMEs at a fixed high contrast of 50%. The arrows show the contrast chosen for elements to be presented to the FFE in the rest of the experiment. This contrast produces equivalent performance to that for the AME when presented with a 50% contrast element. The error bars represent 95% CIs.

Fig. 3
Fig. 3

Motion direction integration threshold measured as a function of the SD (0°–50°) of parent motion direction populations. Circles and dashed curves show the thresholds for (a) the DE of one normal observer and (b)–(d) the FFEs of three amblyopic observers. Squares and solid curves represent the thresholds for (a) the NDE of one normal observer (b)–(d) and the AMEs of three amblyopic observers. The parameters of internal noise (i.n.) and number of samples (n.s.) from the equivalent noise model are shown in insets. The error bars represent 95% CIs.

Fig. 4
Fig. 4

Average internal noise in ten normal and ten amblyopic observers plotted for DEs (light gray), NDEs (dark gray), FFEs (white), and AMEs (black). The error bars represent ± 0.5 SD. The i.n. is statistically similar in all amblyopic and normal observers’ eyes ( p > 0.05 ) .

Fig. 5
Fig. 5

Average n.s. in ten normal and ten amblyopic observers plotted for DEs (light gray), NDEs (dark gray), FFEs (white), and AME (black). The error bars represent ± 0.5 SD. The n.s. is statistically similar in all amblyopic and normal observers’ eyes ( p > 0.05 ) .

Tables (1)

Tables Icon

Table 1 Clinical Details of the Amblyopic Observers Participating in the Experiment a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 G ( x , y ) = x 2 + y 2 2 σ 2 2 π σ 6 exp ( x 2 + y 2 2 σ 2 ) ,
f peak = 1 π σ 2 .

Metrics