Abstract

It is now known that defocus is not the only aberration in the eye that exhibits dynamic behavior during fixation. It is currently unknown what effects, if any, the dynamics of these other aberrations have on steady-state accommodation control. We constructed an adaptive optics system to serve as a tool for future investigations in this area. The system has several design features of interest, including automated precompensation of defocus and astigmatism and a method to bypass a scanner used to reduce speckle. It also has the facility to measure the eye’s aberrations independent of the aberration manipulation device—a 37-actuator membrane deformable mirror. Coherence function analysis was used to assess the deformable mirror performance in terms of coupling between Zernike modes. Modes beyond third radial order showed severe coupling. Pilot data were collected on one subject to demonstrate the utility of this system in steady-state accommodation studies. The value of the system for future work in this area is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Collins, "The electronic refractometer," Br. J. Physiol. Opt. 1, 30-40 (1937).
  2. B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
    [CrossRef] [PubMed]
  3. B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
    [CrossRef] [PubMed]
  4. M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
    [CrossRef] [PubMed]
  5. A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
    [CrossRef] [PubMed]
  6. L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
    [CrossRef] [PubMed]
  7. K. Niwa and T. Tokoro, "Influence of spatial distribution with blur on fluctuations in accommodation," Optom. Vision Sci. 75, 227-232 (1998).
    [CrossRef]
  8. L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
    [CrossRef] [PubMed]
  9. L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
    [CrossRef] [PubMed]
  10. W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
    [CrossRef] [PubMed]
  11. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  12. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003).
    [CrossRef] [PubMed]
  13. T. Nirmaier, G. Pudasaini, and J. Bille, "Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor," Opt. Express 11, 2704-2716 (2003).
    [CrossRef] [PubMed]
  14. M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
    [CrossRef] [PubMed]
  15. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
    [CrossRef]
  16. E. J. Fernández and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation responses," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 954 (2002).
  17. L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).
  18. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
    [CrossRef]
  19. C. Paterson, I. Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000).
    [CrossRef] [PubMed]
  20. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).
  21. E. J. Fernández and P. Artal, "Membrane deformable mirrors for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003).
    [CrossRef] [PubMed]
  22. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed. (Wiley, 2000).
  23. P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust. AU-15, 70-73 (1967).
    [CrossRef]
  24. J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
    [CrossRef] [PubMed]
  25. M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
    [PubMed]
  26. C. Miege and P. Denieul, "Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control," Ophthalmic Physiol. Opt. 8, 165-171 (1988).
    [CrossRef] [PubMed]
  27. J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (3)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

E. J. Fernández and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation responses," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 954 (2002).

L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).

2001 (1)

2000 (3)

J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

C. Paterson, I. Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000).
[CrossRef] [PubMed]

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed. (Wiley, 2000).

1998 (1)

K. Niwa and T. Tokoro, "Influence of spatial distribution with blur on fluctuations in accommodation," Optom. Vision Sci. 75, 227-232 (1998).
[CrossRef]

1997 (1)

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[CrossRef] [PubMed]

1995 (2)

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[CrossRef] [PubMed]

1993 (2)

L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
[CrossRef] [PubMed]

1992 (1)

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

1990 (1)

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

1988 (2)

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

C. Miege and P. Denieul, "Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control," Ophthalmic Physiol. Opt. 8, 165-171 (1988).
[CrossRef] [PubMed]

1987 (1)

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

1980 (1)

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[PubMed]

1967 (1)

P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust. AU-15, 70-73 (1967).
[CrossRef]

1937 (1)

G. Collins, "The electronic refractometer," Br. J. Physiol. Opt. 1, 30-40 (1937).

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

Aragon, J. L.

Artal, P.

Atchison, D. A.

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[CrossRef] [PubMed]

Bendat, J. S.

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed. (Wiley, 2000).

Bille, J.

Burns, S. A.

J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

Chen, L.

L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).

Collins, G.

G. Collins, "The electronic refractometer," Br. J. Physiol. Opt. 1, 30-40 (1937).

Collins, M.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Collins, M. J.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Dainty, C.

Dainty, J. C.

Davis, B.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Denieul, P.

C. Miege and P. Denieul, "Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control," Ophthalmic Physiol. Opt. 8, 165-171 (1988).
[CrossRef] [PubMed]

Diaz-Santana, L.

Doane, M. G.

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[PubMed]

Eadie, A. S.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

Fernández, E. J.

Gasson, P.

Gilmartin, B.

L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
[CrossRef] [PubMed]

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

Gray, L. S.

L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
[CrossRef] [PubMed]

Hampson, K. M.

He, J. C.

J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

Heron, G.

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

Hofer, H.

Iskander, D. R.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Kruger, P. B.

L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).

Marcos, S.

J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

Miege, C.

C. Miege and P. Denieul, "Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control," Ophthalmic Physiol. Opt. 8, 165-171 (1988).
[CrossRef] [PubMed]

Munro, I.

Nirmaier, T.

Niwa, K.

K. Niwa and T. Tokoro, "Influence of spatial distribution with blur on fluctuations in accommodation," Optom. Vision Sci. 75, 227-232 (1998).
[CrossRef]

Owens, H.

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

Paterson, C.

Piersol, A. G.

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed. (Wiley, 2000).

Pudasaini, G.

Pugh, J. R.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[CrossRef] [PubMed]

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

Singer, B.

Stark, L. R.

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

Tokoro, T.

K. Niwa and T. Tokoro, "Influence of spatial distribution with blur on fluctuations in accommodation," Optom. Vision Sci. 75, 227-232 (1998).
[CrossRef]

Torti, C.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

Welch, P. D.

P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust. AU-15, 70-73 (1967).
[CrossRef]

Williams, D. R.

L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

Winn, B.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
[CrossRef] [PubMed]

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

Wood, J.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Zhu, M.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[PubMed]

Br. J. Physiol. Opt. (1)

G. Collins, "The electronic refractometer," Br. J. Physiol. Opt. 1, 30-40 (1937).

Curr. Eye Res. (1)

B. Winn, J. R. Pugh, B. Gilmartin, and H. Owens, "Arterial pulse modulates steady-state ocular accommodation," Curr. Eye Res. 9, 971-975 (1990).
[CrossRef] [PubMed]

IEEE Trans. Audio Electroacoust. (1)

P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust. AU-15, 70-73 (1967).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (2)

E. J. Fernández and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation responses," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 954 (2002).

L. Chen, P. B. Kruger, and D. R. Williams, "Accommodation without higher-order monochromatic aberrations," Invest. Ophthalmol. Visual Sci. 43, Suppl. 1, 956 (2002).

J. Opt. Soc. Am. A (3)

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, 652-660 (2002).

Ophthalmic Physiol. Opt. (8)

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[CrossRef] [PubMed]

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[CrossRef] [PubMed]

C. Miege and P. Denieul, "Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control," Ophthalmic Physiol. Opt. 8, 165-171 (1988).
[CrossRef] [PubMed]

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, "Effect of target luminance on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 13, 258-265 (1993).
[CrossRef] [PubMed]

Opt. Express (4)

Optom. Vision Sci. (1)

K. Niwa and T. Tokoro, "Influence of spatial distribution with blur on fluctuations in accommodation," Optom. Vision Sci. 75, 227-232 (1998).
[CrossRef]

Vision Res. (3)

L. S. Gray, B. Winn, and B. Gilmartin, "Accommodative microfluctuations and pupil diameter," Vision Res. 33, 2083-2090 (1993).
[CrossRef] [PubMed]

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accomodated human eye," Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

Other (1)

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed. (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Experimental setup. PM, plane mirror; CM, cold mirror; HM, hot mirror; BS, beam splitter; L, lens (focal length is in millimeters); A, aperature.

Fig. 2
Fig. 2

(Color online) Bypassing the scanner for the visible light from the stimulus.

Fig. 3
Fig. 3

(Color online) Function of the hot mirror HM 1 . When the mirror control voltages are being determined, HM 1 is flipped out of the beam path. When making measurements on a real eye, HM 1 is flipped into the beam path so that the deformable mirror (DM) is bypassed for the wavefront sensing light but not for the light from the target.

Fig. 4
Fig. 4

(Color online) Time trace of astigmatism (A) and three of the coupled modes: (B) 8, (C) 10, (D) 13.

Fig. 5
Fig. 5

(Color online) Plots representing the coupling that exists between Zernike modes for the mirror.

Fig. 6
Fig. 6

(Color online) Significant changes in the PSD of the accommodation microfluctuations of one subject when the mirror was modulating each of the Zernike mode aberrations at 0.2 Hz , 0.4 Hz , and 1 Hz .

Tables (1)

Tables Icon

Table 1 Zernike Aberration Modes and Their Amplitudes Generated by the Deformable Mirror

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Z Mag i = Z Amp sin ( 2 π f i Δ t ) ,
c ( t j + 1 ) = g CM ( a req a meas ) + c ( t j ) ,
γ x y 2 ( f ) = G x y ( f ) 2 G x x ( f ) G y y ( f ) ,
G x y = 2 N F s X * ( f , T ) Y ( f , T ) ,
G x x = 2 N F s X ( f , T ) 2 ,
A = 4 3 a 2 0 R 2 ,
[ n G x x χ n ; 0.025 2 G x x n G x x χ n ; 0.975 2 ] ,

Metrics