Abstract

A finite-element reconstruction algorithm for simultaneous reconstruction of both optical and acoustic properties of heterogeneous media is presented. The algorithm is based on the Helmholtz-like photoacoustic wave equation in the frequency domain. A dual meshing scheme is described and an adjoint sensitivity method is adopted for efficient inverse computation. The algorithm is implemented with the second-order absorbing boundary conditions and with a multireceiving and multifrequency strategy. The algorithm is evaluated using simulated data under various practical cases including different noise levels, varied range of receiving frequency, different contrast levels between the heterogeneity and background region, and multiple targets. The effect of acoustic heterogeneity on conventional pure optical absorption reconstruction is also studied.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
    [CrossRef] [PubMed]
  2. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
    [CrossRef] [PubMed]
  3. A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
    [CrossRef] [PubMed]
  4. A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
    [CrossRef]
  5. A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
    [CrossRef]
  6. C. G. A. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessls in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  7. J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
    [CrossRef] [PubMed]
  8. R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
    [CrossRef] [PubMed]
  9. P. Liu, "The P-transform and photoacoustic image reconstruction," Phys. Med. Biol. 43, 667-674 (1998).
    [CrossRef] [PubMed]
  10. K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
    [CrossRef]
  11. G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
    [CrossRef] [PubMed]
  12. X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
    [CrossRef]
  13. S. J. Norton and T. Vo-Dinh, "Optoacoustic diffraction tomography: analysis of algorithms," J. Opt. Soc. Am. A 20, 1859-1866 (2003).
    [CrossRef]
  14. H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
    [CrossRef]
  15. J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  16. X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
    [CrossRef] [PubMed]
  17. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997).
    [CrossRef] [PubMed]
  18. A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-430 (1986).
    [CrossRef]
  19. S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).
  20. A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math. 23, 707-725 (1980).
    [CrossRef]
  21. K. D. Paulsen, P. M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model-based Approaches (Springer-Verlag, 2005).
  22. K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
    [CrossRef] [PubMed]
  23. F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
    [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

2004

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

2003

S. J. Norton and T. Vo-Dinh, "Optoacoustic diffraction tomography: analysis of algorithms," J. Opt. Soc. Am. A 20, 1859-1866 (2003).
[CrossRef]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

2002

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

2001

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

1999

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
[CrossRef]

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

1998

1997

1995

K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
[CrossRef] [PubMed]

1993

H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
[CrossRef]

1986

A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-430 (1986).
[CrossRef]

1982

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

1980

A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math. 23, 707-725 (1980).
[CrossRef]

Andreev, V.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Ball, J.

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Bartlett, M.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

Bayliss, A.

A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math. 23, 707-725 (1980).
[CrossRef]

Berger, A.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Berggren, M. J.

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Bevilacqua, F.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Chen, Z.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

de Mul, F. F.

Dekker, A.

Eggert, J.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

Eppstein, M. J.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Esenaliev, R.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Fajardo, L.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

Fedele, F.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Fleming, D.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Frauchiger, D.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Frenz, M.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Fry, E.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

Gan, H.

H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Gilman, L.

K. D. Paulsen, P. M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model-based Approaches (Springer-Verlag, 2005).

Gu, X.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Hoelen, C. G. A.

Holcombe, R.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Iftimia, N.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

Jacques, S.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Jiang, H.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997).
[CrossRef] [PubMed]

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Johnson, S. A.

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Karabutov, A.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
[CrossRef]

Klove, K.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

Kostli, K. P.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Kruger, G.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Laible, J. P.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Levin, P.

H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
[CrossRef]

Liu, P.

P. Liu, "The P-transform and photoacoustic image reconstruction," Phys. Med. Biol. 43, 667-674 (1998).
[CrossRef] [PubMed]

Ludwig, R.

H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
[CrossRef]

Meaney, P. M.

K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model-based Approaches (Springer-Verlag, 2005).

Moskowitz, M. J.

K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
[CrossRef] [PubMed]

Nelson, J.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Niederhauser, J.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Norton, S. J.

Oraevsky, A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Osterberg, U. L.

Paltauf, G.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Patterson, M. S.

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, P. M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model-based Approaches (Springer-Verlag, 2005).

Pongers, R.

Prahl, S.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Reinecke, D.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Savateeva, E.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
[CrossRef]

Schutz, L.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Singh, H.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Stenger, F.

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Tam, A. C.

A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-430 (1986).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Tromberg, B.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Turkel, E.

A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math. 23, 707-725 (1980).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Viator, J.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Vo-Dinh, T.

Wang, L.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

Wang, X.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

Weber, H.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Wilcox, C.

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Xu, M.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

Xu, Y.

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

Yokoo, S.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

Zhang, Q.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

Acad. Radiol.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Acoust. Imaging

S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, "Wave equation and inverse solutions for soft tissue," Acoust. Imaging 11, 409-424 (1982).

Appl. Opt.

Commun. Pure Appl. Math.

A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math. 23, 707-725 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

IEEE Trans. Med. Imaging

K. D. Paulsen, P. M. Meaney, and M. J. Moskowitz, "A dual mesh scheme for finite element based reconstruction algorithm," IEEE Trans. Med. Imaging 14, 504-514 (1995).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

H. Gan, P. Levin, and R. Ludwig, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain," J. Acoust. Soc. Am. 94, 1651-1662 (1993).
[CrossRef]

J. Comput. Phys.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implement," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Lasers Surg. Med.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Med. Phys.

R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography--technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, "Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment," Med. Phys. 29, 2799-2805 (2002).
[CrossRef]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

P. Liu, "The P-transform and photoacoustic image reconstruction," Phys. Med. Biol. 43, 667-674 (1998).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," in Proc. SPIE 3601, 284-295 (1999).
[CrossRef]

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, "Laser opto-acoustic imaging of the breast: detection of cancer angiogensis," in Proc. SPIE 3597, 352-363 (1999).
[CrossRef]

Rev. Mod. Phys.

A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-430 (1986).
[CrossRef]

Other

K. D. Paulsen, P. M. Meaney, and L. Gilman, Alternative Breast Imaging: Four Model-based Approaches (Springer-Verlag, 2005).

J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry of the test cases. The dimension units are in millimeters.

Fig. 2
Fig. 2

Reconstructed absorbed optical energy density (left column) and acoustic velocity (right column) images with different contrast levels with respect to the background: (a) and (b), case 1, (c) and (d) case 2, (e) and (f) case 3.

Fig. 3
Fig. 3

Comparison of exact and reconstructed acoustic and optical property profiles along two transects (AB and CD, see Fig. 1) for the images shown in Fig. 2: (a) absorbed optical energy density along transect AB for case 1, (b) absorbed optical energy density along transect CD for case 1, (c) acoustic velocity along transect AB for case 1, (d) acoustic velocity along transect CD for case 1, (e) absorbed optical energy density along transect AB for case 2, (f) absorbed optical energy density along transect CD for case 2, (g) acoustic velocity along transect AB for case 2, (h) acoustic velocity along transect CD for case 2, (i) absorbed optical energy density along transect AB for case 3, (j) absorbed optical energy density along transect CD for case 3, (k) acoustic velocity along transect AB for case 3, (l) acoustic velocity along transect CD for case 3.

Fig. 4
Fig. 4

Reconstructed absorbed optical energy density (left column) and acoustic velocity (right column) images with different noise levels for case 2: (a) and (b) 0% noise, (c) and (d) 1% noise, (e) and (f) 5% noise.

Fig. 5
Fig. 5

Comparison of exact and reconstructed acoustic and optical property profiles along two transects (AB and CD, see Fig. 1) for the images shown in Figs. 4e, 4f with 5% noise: (a) absorbed optical energy density along transect AB, (b) absorbed optical energy density along transect CD, (c) acoustic velocity along transect AB, (d) acoustic velocity along transect CD.

Fig. 6
Fig. 6

Reconstructed absorbed optical energy density (left column) and acoustic velocity (right column) with different frequency ranges: (a) and (b) 200 690 kHz ; (c) and (d) 150 640 kHz ; (e) and (f) 100 590 kHz ; (g) and (h) 50 540 kHz .

Fig. 7
Fig. 7

Reconstructed absorbed optical energy density images with linear algorithm, i.e., assuming homogeneous acoustic property: (a) case 1, (b) case 1 with enlarged frequency range of 30 1520 kHz , (c) case 2, (d) case 2 with enlarged frequency range of 30 1520 kHz , (e) case 3, (f) case 3 with enlarged frequency range of 30 1520 kHz .

Fig. 8
Fig. 8

Comparison of reconstructed optical property profiles along two transects (AB and CD, see Fig. 1) with linear and nonlinear algorithms: (a) absorbed optical energy density along transect AB for case 1, (b) absorbed optical energy density along transect CD for case 1, (c) absorbed optical energy density along transect AB for case 2, (d) absorbed optical energy density along transect CD for case 2, (e) absorbed optical energy density along transect AB for case 3, (f) absorbed optical energy density along transect CD for case 3.

Tables (1)

Tables Icon

Table 1 Absorbed Optical Energy Density and Acoustic Velocity Used in This Study a

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

2 P ( r , ω ) + k 0 2 ( 1 + O ) P ( r , ω ) = i k 0 c 0 β Φ ( r ) C p ,
O = c o 2 c 2 1 + i k 0 A c 0 c 2 ,
j = 1 N P j [ ψ j ψ i k 0 2 ( 1 + O ) ψ j ψ i ( η ψ j + γ 2 ψ j φ 2 ) ψ i d s ] = i k 0 c 0 β Φ C P ψ i ,
P n ̂ = η P + γ 2 P φ 2 ,
[ A ] { P } = { B } ,
A i j = ψ j ψ i k 0 2 ψ j ψ i k 0 2 k O R , k ψ k ψ j ψ i i k 0 2 l O I , l ψ l ψ j ψ i ( η ψ j + γ 2 ψ j φ 2 ) ψ i d s ,
B i = i k 0 c 0 β C p k Φ R , k ψ k ψ i + k 0 c 0 β C p l Φ I , l ψ l ψ i ,
{ P } = { P 1 , P 2 , , P N } T .
P ( O ̃ R , O ̃ I , Φ ̃ R , Φ ̃ I ) = P ( O R , O I , Φ R , Φ I ) + P O R Δ O R + P O I Δ O I + P Φ R Δ Φ R + P Φ I Δ Φ I + ,
J Δ χ = P o P c ,
J = [ P 1 O R , 1 P 1 O R , K P 1 O I , 1 P 1 O I , L P 1 Φ R , 1 P 1 Φ R , K P 1 Φ I , 1 P 1 Φ I , L P 2 O R , 1 P 2 O R , K P 2 O I , 1 P 2 O I , L P 2 Φ R , 1 P 2 Φ R , K P 2 Φ I , 1 P 2 Φ I , L P M O R , 1 P M O R , K P M O I , 1 P M O I , L P M Φ R , 1 P M Φ R , K P M Φ I , 1 P M Φ I , L ] ,
Δ χ = ( Δ O R , 1 , Δ O R , 2 , , Δ O R , K , Δ O I , 1 , Δ O I , 2 , , Δ O I , L , Δ Φ R , 1 , Δ Φ R , 2 , , Δ Φ R , K , Δ Φ I , 1 , Δ Φ I , 2 , , Δ Φ I , L ) T ,
P o = ( P 1 o , P 2 o , , P M o ) T ,
P c = ( P 1 c , P 2 c , , P M c ) T ,
( J T J + λ I ) Δ χ = J T ( P o P c ) ,
F = min : P c P o 2 + λ χ χ ̃ 2 ,
O R ( x i , y i ) = n = 1 3 O R , L n Ψ L n ( x , y ) ,
O I ( x i , y i ) = n = 1 3 O I , L n Ψ L n ( x , y ) ,
a i j O R , k = k 0 2 Ψ k ϕ i ϕ j , a i j O I , l = i k 0 2 Ψ l ϕ i ϕ j ,
a i j Φ R , k = i k 0 c 0 β C p Ψ k ϕ i , a i j Φ I , l = k 0 c 0 β C p Ψ l ϕ i ,
[ A ] { P O R } = [ A O R ] { P } ,
[ A ] { P Φ R } = [ B Φ R ] [ A Φ R ] { P } .
[ A ] T [ Ψ ] = [ Δ d ] ,
[ Ψ ] T [ A ] { P O R } = [ Ψ ] T [ A O R ] { P } ,
[ Ψ ] T [ A ] { P Φ R } = [ Ψ ] T { B Φ R } [ Ψ ] T [ A Φ A ] { P } .
{ P O R } T [ A ] T [ Ψ ] = { P } T [ A O R ] T [ Ψ ] ,
{ P Φ R } T [ A ] T [ Ψ ] = { B Φ R } T [ Ψ ] { P } T [ A Φ R ] T [ Ψ ] .
{ P O R } T = { P } T [ A O R ] T [ Ψ ] ,
{ P Φ R } T = { B Φ R } T [ Ψ ] { P } T [ A Φ R ] T [ Ψ ] .
{ P O R } = [ Ψ ] T [ P Φ R ] { P } ,
{ P Φ R } = [ Ψ ] T { B Φ R } [ Ψ ] T [ A Φ R ] { P } .
( J ω T J ω + λ I ) Δ χ = J ω T ( P ω o P ω c ) ,

Metrics