Abstract

We present a Purkinje imaging system for phakometry and measurement of tilt and decentration of crystalline and intraocular lenses (IOLs). Crystalline lens radii of curvature were estimated by using both a merit function and the equivalent mirror approaches. Tilts and decentrations were estimated by using Phillips’s linear analysis. We present a complete validation of the technique through exhaustive computer simulations and control experiments, and measurements in 17 normal eyes (mean age 26.67±2.31) and nine postcataract surgery eyes (mean age 74±2.3). Crystalline lens radii ranged from 12.7 to 8.81 mm and from 5.64 to 7.09mm for anterior and posterior surfaces, respectively. Crystalline lens tilt ranged from 2.8 to 2.87deg horizontally and from 2.58 to 1deg vertically. Crystalline lens decentration ranged from 0.09 to 0.45 mm horizontally and from 0.09 to 0.22mm vertically. IOL tilt ranged from 3.6 to 1.51deg horizontally and from 5.97 to 1.85deg vertically. IOL decentration ranged from 0.53 to 0.31mm horizontally and from 0.13 to 0.96mm vertically.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
    [CrossRef] [PubMed]
  2. F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  3. J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).
  4. J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
    [CrossRef] [PubMed]
  5. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
    [CrossRef]
  6. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).
  7. S. Barbero, S. Marcos, and I. Jimenez-Alfaro, 'Optical aberrations of intraocular lenses measured in vivo andin vitro,' J. Opt. Soc. Am. A 20, 1841-1851 (2003).
    [CrossRef]
  8. C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
    [CrossRef]
  9. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
    [CrossRef]
  10. S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
    [CrossRef] [PubMed]
  11. S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).
  12. J. Wulfeck, 'Infrared photography of the so-called third Purkinje image,' J. Opt. Soc. Am. 45, 928-931 (1955).
    [CrossRef] [PubMed]
  13. H. G. Van Veen and D. A. Goss, 'Simplified system of Purkinje image photography for phakometry,' Am. J. Optom. Physiol. Opt. 65, 905-908 (1988).
    [PubMed]
  14. A. Sorsby, B. Benjamin, and M. Sheridan, 'Refraction and its components during the growth of the eye from the age of three,' Spec. Rep. Ser. 301 (Medical Research Council, London, 1961).
  15. D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).
  16. K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
    [CrossRef]
  17. P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
    [PubMed]
  18. G. Smith and L. F. Garner, 'Determination of the radius of curvature of the anterior lens surface from the Purkinje images,' Ophthalmic Physiol. Opt. 16, 135-143 (1996).
    [CrossRef] [PubMed]
  19. L. F. Garner, 'Calculation of the radii of curvature of the crystalline lens surfaces,' Ophthalmic Physiol. Opt. 17, 75-80 (1997).
    [CrossRef] [PubMed]
  20. J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
    [CrossRef] [PubMed]
  21. L. F. Garner and G. Smith, 'Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,' Optom. Vision Sci. 74, 114-119 (1997).
    [CrossRef]
  22. L. F. Garner and M. K. H. Yap, 'Changes in ocular dimensions and refraction with accommodation,' Ophthalmic Physiol. Opt. 17, 12-17 (1997).
    [CrossRef] [PubMed]
  23. L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
    [CrossRef]
  24. D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
    [PubMed]
  25. J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).
  26. T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
    [CrossRef] [PubMed]
  27. M. Dubbelman and G. L. Van der Heijde, 'The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,' Vision Res. 41, 1867-1877 (2001).
    [CrossRef] [PubMed]
  28. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
    [CrossRef]
  29. Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).
  30. M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
    [CrossRef] [PubMed]
  31. J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, 'Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,' J. Opt. Soc. Am. A 21, 346-354 (2004).
    [CrossRef]
  32. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
    [CrossRef]
  33. L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
    [CrossRef]
  34. N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).
  35. M. Herzberger, 'Colour correction in optical systems and a new dispersion formula,' Opt. Acta 5, 197-215 (1969).
  36. T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
    [CrossRef]
  37. J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).
  38. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
    [CrossRef]
  39. M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
    [CrossRef] [PubMed]
  40. D. Ismet, 'Tilt and decentration after primary and secondary transsclerally sutured posterior chamber intraocular lens implantation,' J. Cataract Refractive Surg. 27, 227-232 (2000).
  41. Jae Soon Kim and K. H. Shyn, 'Biometry of 3 types of intraocular lenses using Scheimpflug photography,' J. Cataract Refractive Surg. 27, 533-536 (2001).
    [CrossRef]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
[CrossRef]

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

2004 (7)

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
[CrossRef] [PubMed]

J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, 'Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,' J. Opt. Soc. Am. A 21, 346-354 (2004).
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

2003 (2)

S. Barbero, S. Marcos, and I. Jimenez-Alfaro, 'Optical aberrations of intraocular lenses measured in vivo andin vitro,' J. Opt. Soc. Am. A 20, 1841-1851 (2003).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

2002 (3)

S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
[CrossRef] [PubMed]

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

2001 (6)

M. Dubbelman and G. L. Van der Heijde, 'The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,' Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
[CrossRef] [PubMed]

J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Jae Soon Kim and K. H. Shyn, 'Biometry of 3 types of intraocular lenses using Scheimpflug photography,' J. Cataract Refractive Surg. 27, 533-536 (2001).
[CrossRef]

2000 (2)

D. Ismet, 'Tilt and decentration after primary and secondary transsclerally sutured posterior chamber intraocular lens implantation,' J. Cataract Refractive Surg. 27, 227-232 (2000).

J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

1998 (3)

L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
[CrossRef]

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

1997 (6)

J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).

J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

L. F. Garner and G. Smith, 'Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,' Optom. Vision Sci. 74, 114-119 (1997).
[CrossRef]

L. F. Garner and M. K. H. Yap, 'Changes in ocular dimensions and refraction with accommodation,' Ophthalmic Physiol. Opt. 17, 12-17 (1997).
[CrossRef] [PubMed]

L. F. Garner, 'Calculation of the radii of curvature of the crystalline lens surfaces,' Ophthalmic Physiol. Opt. 17, 75-80 (1997).
[CrossRef] [PubMed]

1996 (1)

G. Smith and L. F. Garner, 'Determination of the radius of curvature of the anterior lens surface from the Purkinje images,' Ophthalmic Physiol. Opt. 16, 135-143 (1996).
[CrossRef] [PubMed]

1992 (1)

D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).

1990 (1)

D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
[PubMed]

1988 (2)

H. G. Van Veen and D. A. Goss, 'Simplified system of Purkinje image photography for phakometry,' Am. J. Optom. Physiol. Opt. 65, 905-908 (1988).
[PubMed]

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

1969 (1)

M. Herzberger, 'Colour correction in optical systems and a new dispersion formula,' Opt. Acta 5, 197-215 (1969).

1955 (1)

Adams, A.

D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).

Artal, P.

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).

Backes, A.

J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Barbero, S.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

S. Barbero, S. Marcos, and I. Jimenez-Alfaro, 'Optical aberrations of intraocular lenses measured in vivo andin vitro,' J. Opt. Soc. Am. A 20, 1841-1851 (2003).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Barry, J. C.

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
[CrossRef] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
[CrossRef] [PubMed]

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).

J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).

Benito, A.

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Benjamin, B.

A. Sorsby, B. Benjamin, and M. Sheridan, 'Refraction and its components during the growth of the eye from the age of three,' Spec. Rep. Ser. 301 (Medical Research Council, London, 1961).

Branmann, K.

J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).

Burns, S.

J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Burr, D.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

Cano, D.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

Castejon-Mochon, F. J.

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Chao-Yu, Hu

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

Davies, L. N.

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

Dorronsoro, C.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, 'The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,' Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

Dunne, M.

T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
[CrossRef] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
[CrossRef] [PubMed]

Dunne, M. C.

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).

Fernandez, V.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Frith, M. J.

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

Garner, L. F.

L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
[CrossRef]

L. F. Garner, 'Calculation of the radii of curvature of the crystalline lens surfaces,' Ophthalmic Physiol. Opt. 17, 75-80 (1997).
[CrossRef] [PubMed]

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

L. F. Garner and G. Smith, 'Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,' Optom. Vision Sci. 74, 114-119 (1997).
[CrossRef]

L. F. Garner and M. K. H. Yap, 'Changes in ocular dimensions and refraction with accommodation,' Ophthalmic Physiol. Opt. 17, 12-17 (1997).
[CrossRef] [PubMed]

G. Smith and L. F. Garner, 'Determination of the radius of curvature of the anterior lens surface from the Purkinje images,' Ophthalmic Physiol. Opt. 16, 135-143 (1996).
[CrossRef] [PubMed]

Goss, D. A.

H. G. Van Veen and D. A. Goss, 'Simplified system of Purkinje image photography for phakometry,' Am. J. Optom. Physiol. Opt. 65, 905-908 (1988).
[PubMed]

Guyton, D. L.

D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
[PubMed]

Hamaoui, M.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Han-Chin, Kuo

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

He, J. C.

J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

Herzberger, M.

M. Herzberger, 'Colour correction in optical systems and a new dispersion formula,' Opt. Acta 5, 197-215 (1969).

Ho, A.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Ismet, D.

D. Ismet, 'Tilt and decentration after primary and secondary transsclerally sutured posterior chamber intraocular lens implantation,' J. Cataract Refractive Surg. 27, 227-232 (2000).

Jimenez-Alfaro, I.

Jiménez-Alfaro, I.

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).

Jockel, M.

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

Jones, L. A.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

Kim, Jae Soon

Jae Soon Kim and K. H. Shyn, 'Biometry of 3 types of intraocular lenses using Scheimpflug photography,' J. Cataract Refractive Surg. 27, 533-536 (2001).
[CrossRef]

Kinnear, R. F.

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

Kirschkamp, T.

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
[CrossRef] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
[CrossRef] [PubMed]

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

Koester, C. J.

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

Koretz, J. F.

Lin-Chung, Woung

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

Llorente, L.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Lopez-Gil, N.

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Mallen, E. A.

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

Manns, F.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Marcos, S.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

S. Barbero, S. Marcos, and I. Jimenez-Alfaro, 'Optical aberrations of intraocular lenses measured in vivo andin vitro,' J. Opt. Soc. Am. A 20, 1841-1851 (2003).
[CrossRef]

S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

McLellan, J.

J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).

Meng-Chi, Wang

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

Merayo-Lloves, J.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Merayo-Lloves, J. M.

S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
[CrossRef] [PubMed]

Mitchell, G. L.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

Moeschberger, M. L.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

Mooren, V. D.

N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Mutti, D.

D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).

Mutti, D. O.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Ooi, C. S.

L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
[CrossRef]

Owens, H.

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

Parel, J.-M.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Perez-Emmanuelli, J.

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

Phillips, P.

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

Piers, P. Ann

N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).

Pongs, U. M.

J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Rosskothen, H. D.

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

Sandadi, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Semmlow, J. L.

Sheridan, M.

A. Sorsby, B. Benjamin, and M. Sheridan, 'Refraction and its components during the growth of the eye from the age of three,' Spec. Rep. Ser. 301 (Medical Research Council, London, 1961).

Shyn, K. H.

Jae Soon Kim and K. H. Shyn, 'Biometry of 3 types of intraocular lenses using Scheimpflug photography,' J. Cataract Refractive Surg. 27, 533-536 (2001).
[CrossRef]

Smith, G.

L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
[CrossRef]

L. F. Garner and G. Smith, 'Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,' Optom. Vision Sci. 74, 114-119 (1997).
[CrossRef]

G. Smith and L. F. Garner, 'Determination of the radius of curvature of the anterior lens surface from the Purkinje images,' Ophthalmic Physiol. Opt. 16, 135-143 (1996).
[CrossRef] [PubMed]

Sorsby, A.

A. Sorsby, B. Benjamin, and M. Sheridan, 'Refraction and its components during the growth of the eye from the age of three,' Spec. Rep. Ser. 301 (Medical Research Council, London, 1961).

Strenk, L. M.

Strenk, S. A.

Sverker, N.

N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).

Uozato, H.

D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
[PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, 'The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,' Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

van der Heijde, R. G.

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Van Veen, H. G.

H. G. Van Veen and D. A. Goss, 'Simplified system of Purkinje image photography for phakometry,' Am. J. Optom. Physiol. Opt. 65, 905-908 (1988).
[PubMed]

Volker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Wahlisch, G.

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Wisnicki, H. J.

D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
[PubMed]

Wulfeck, J.

Yap, M. K.

L. F. Garner and M. K. H. Yap, 'Changes in ocular dimensions and refraction with accommodation,' Ophthalmic Physiol. Opt. 17, 12-17 (1997).
[CrossRef] [PubMed]

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

Zadnik, K.

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).

Zipper, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, 'Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,' Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

H. G. Van Veen and D. A. Goss, 'Simplified system of Purkinje image photography for phakometry,' Am. J. Optom. Physiol. Opt. 65, 905-908 (1988).
[PubMed]

Biomed. Tech. (1)

T. Kirschkamp, M. Jockel, G. Wahlisch, and J. C. Barry, 'Construction of a model eye to simulate Purkinje reflections for the determination of the radii of curvature and of the position of the crystalline lens of the eye,' Biomed. Tech. 43, 318-325 (1998).
[CrossRef]

Clin. Exp. Optom. (1)

L. F. Garner, C. S. Ooi, and G. Smith, 'Refractive index of the crystalline lens in young and aged eyes,' Clin. Exp. Optom. 81, 145-150 (1998).
[CrossRef]

Exp. Eye Res. (1)

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, 'Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,' Exp. Eye Res. 78, 39-51 (2004).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (5)

J. C. Barry, A. Backes, and U. M. Pongs, 'Corneal reflex distance from the limbus center is more accurate for the measurement of ocular misalignment than from the pupil center,' Invest. Ophthalmol. Visual Sci. 38, 531 (1997).

D. Mutti, K. Zadnik, and A. Adams, 'A video technique for phakometry of the human crystalline lens,' Invest. Ophthalmol. Visual Sci. 33, 1771-1782 (1992).

J. C. Barry, K. Branmann, and M. C. M. Dunne, 'Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing,' Invest. Ophthalmol. Visual Sci. 38, 1476-1484 (1997).

J. McLellan, S. Marcos, and S. Burns, 'Age-related changes in monochromatic wave aberrations in the human eye,' Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, 'Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,' Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

J. Cataract Refract. Surg. (4)

S. Barbero, S. Marcos, and J. M. Merayo-Lloves, 'Total and corneal aberrations in a unilateral aphakic subject,' J. Cataract Refract. Surg. 28, 1594-1600 (2002).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, 'Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,' J. Cataract Refract. Surg. 21, 223-235 (2004).

P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, 'Measurement of intraocular lens decentration and tilt in vivo,' J. Cataract Refract. Surg. 14, 129-135 (1988).
[PubMed]

Wang Meng-Chi, Woung Lin-Chung, Hu Chao-Yu, and Kuo Han-Chin, 'Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,' J. Cataract Refract. Surg. 24, 1652-1657 (1998).

J. Cataract Refractive Surg. (2)

D. Ismet, 'Tilt and decentration after primary and secondary transsclerally sutured posterior chamber intraocular lens implantation,' J. Cataract Refractive Surg. 27, 227-232 (2000).

Jae Soon Kim and K. H. Shyn, 'Biometry of 3 types of intraocular lenses using Scheimpflug photography,' J. Cataract Refractive Surg. 27, 533-536 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vision (2)

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288 (2004); http://journalofvision.org/4/4/5/.
[CrossRef]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, 'Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,' J. Vision 4, 288-298 (2004).
[CrossRef]

Ophthalmic Physiol. Opt. (6)

L. F. Garner and M. K. H. Yap, 'Changes in ocular dimensions and refraction with accommodation,' Ophthalmic Physiol. Opt. 17, 12-17 (1997).
[CrossRef] [PubMed]

T. Kirschkamp, M. Dunne, and J. C. Barry, 'Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,' Ophthalmic Physiol. Opt. 24, 65-73 (2004).
[CrossRef] [PubMed]

G. Smith and L. F. Garner, 'Determination of the radius of curvature of the anterior lens surface from the Purkinje images,' Ophthalmic Physiol. Opt. 16, 135-143 (1996).
[CrossRef] [PubMed]

L. F. Garner, 'Calculation of the radii of curvature of the crystalline lens surfaces,' Ophthalmic Physiol. Opt. 17, 75-80 (1997).
[CrossRef] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, 'Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,' Ophthalmic Physiol. Opt. 21, 450-460 (2001).
[CrossRef] [PubMed]

M. C. M. Dunne, L. N. Davies, E. A. H. Mallen, T. Kirschkamp, and J. C. Barry, 'Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes,' Ophthalmic Physiol. Opt. 25, 143-152 (2005).
[CrossRef] [PubMed]

Ophthalmology (1)

D. L. Guyton, H. Uozato, and H. J. Wisnicki, 'Rapid determination of intraocular lens tilt and decentration through the undilated pupil,' Ophthalmology 97, 1259-1264 (1990).
[PubMed]

Opt. Acta (1)

M. Herzberger, 'Colour correction in optical systems and a new dispersion formula,' Opt. Acta 5, 197-215 (1969).

Optom. Vision Sci. (4)

L. F. Garner, H. Owens, M. K. H. Yap, M. J. Frith, and R. F. Kinnear, 'Radius of curvature of the posterior surface of the cornea,' Optom. Vision Sci. 74, 496-498 (1997).
[CrossRef]

K. Zadnik, D. O. Mutti, G. L. Mitchell, L. A. Jones, D. Burr, and M. L. Moeschberger, 'Normal eye growth in emmetropic schoolchildren,' Optom. Vision Sci. 81, 819-828 (2004).
[CrossRef]

L. F. Garner and G. Smith, 'Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,' Optom. Vision Sci. 74, 114-119 (1997).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, 'On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,' Optom. Vision Sci. 80, 115-125 (2003).
[CrossRef]

Vision Res. (6)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Res. 39, 4309-4323 (1999).
[CrossRef]

J. C. He, S. A. Burns, and S. Marcos, 'Monochromatic aberrations in the accommodated human eye,' Vision Res. 40, 41-48 (2000).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, 'Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,' Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, 'Ocular wavefront aberration statistics in a normal young population,' Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, 'The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,' Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, 'Change in shape of the aging human crystalline lens with accommodation,' Vision Res. 45, 117-132 (2005).
[CrossRef]

Other (2)

N. Sverker, P. Artal, P. Ann Piers, and V. D. Mooren, 'Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,' U. S. patent 6,609,793 (August 26, 2003).

A. Sorsby, B. Benjamin, and M. Sheridan, 'Refraction and its components during the growth of the eye from the age of three,' Spec. Rep. Ser. 301 (Medical Research Council, London, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the Purkinje imaging system optical setup, with single LEDs (S-L1 and S-L2) collimated with achromatic lenses L1 and L2 ( f = 125 mm , ϕ = 25 mm ) for measurements of tilt and decentration on right and left eyes, and double LEDs (D-L1 and D-L2) for phakometry. Images are captured on a CCD camera with telecentric lens (TL). Fixation targets (FT) are presented on a minidisplay, collimated by L5 ( f = 125 mm , ϕ = 38 mm ) and inserted into the system with mirror M1. Illumination and imaging channels are separated by a hot mirror acting as a beam splitter (BS). A Badal system consisting of two mirrors (M2, M3) and two lenses (L3, L4) ( f = 125 mm , ϕ = 25 mm ) allows for correction of refraction and for compliance with accommodative demands.

Fig. 2
Fig. 2

Examples of pupillary images showing double PI, PIII, and PIV used to obtain phakometry: (a) eye with normal crystalline lens (eye 1, OD) in the horizontal direction, (b) eye with normal crystalline lens (eye 1, OD) in the vertical direction, (c) eye with IOL (eye 2, OS), (d) eye with IOL (eye 2, OS).

Fig. 3
Fig. 3

Examples of pupillary images showing PI, PIII, and PIV used to obtain tilt and decentration for different fixation angles: (a) eye with normal crystalline lens (subject 15, OD) fixating at 3.5 deg temporal, (b) eye with normal crystalline lens (subject 15, OD) fixating at 3.5 deg inferior, (c) eye with IOL (eye 2, OS) fixating at 1.7 deg superior, (d) eye with IOL (eye 2, OS) fixating at 1.7 deg inferior.

Fig. 4
Fig. 4

Anterior and posterior radii of curvature, estimated by using the merit function (MF) and equivalent mirror (EM) methods. Eyes (right eyes from 12 subjects) are ranked by increased myopic error. Values are an average of at least three measurements. Error bars stand for standard deviations.

Fig. 5
Fig. 5

Horizontal and vertical tilt of the crystalline lens in 17 eyes of 14 subjects. Solid symbols correspond to right eyes, and open symbols to left eyes. Circles correspond to subjects 1–11; squares, triangles, and diamonds to subjects 12, 13, and 14, respectively. Horizontal tilts represent tilts about the y axis, and vertical tilts those about the x axis. Error bars are smaller than the symbol size.

Fig. 6
Fig. 6

Horizontal and vertical decentration of the crystalline lens in 17 eyes of 14 subjects. Solid symbols correspond to right eyes, and open symbols to left eyes, labeled as in Fig. 5. Positive horizontal decentrations represent temporal shifts from the pupil center for the right eye, and nasal shifts for the left eyes. Error bars are smaller than the symbol size.

Fig. 7
Fig. 7

Horizontal and vertical tilt of the IOL in eight eyes of five subjects after cataract surgery. Solid symbols correspond to right eyes and spherical IOLs, and open symbols correspond to left eyes and aspheric IOLs. Each shape correspond to a different subject. Signs are as in Fig. 5. Error bars are smaller than the symbol size.

Fig. 8
Fig. 8

Horizontal and vertical decentration of the IOL in eight eyes of five subjects after cataract surgery. Solid symbols correspond to right eyes, and spherical IOLs, and open symbols correspond to left eyes and aspheric IOLs. Each shape corresponds to a different subject. Signs are as in Fig. 5. Error bars are smaller than the symbol size.

Tables (2)

Tables Icon

Table 1 Model Eye with Spherical Surfaces ( n cornea = 1.3687 , n lens = 1.41 , n aqueous = 1.32854 ) for 880 nm in Zemax with Herzberger Formula [Eq. (3)]

Tables Icon

Table 2 Realistic Model Eye with Aspheric Surfaces, Anterior Corneal Elevation from Corneal Topography, Gradient Refractive Index in the Lens, and Lens Tilt and Decentration

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f 3 = [ ( h 3 h 1 ) th ] 2 [ ( h 3 h 1 ) exp ] 2 ,
f 4 = [ ( h 4 h 1 ) th ] 2 [ ( h 4 h 1 ) exp ] 2 .
P 1 = E β ,
P 3 = F β + A α + C d ,
P 4 = G β + B α + D d ,
n = a + b L + c L 2 + d λ 2 + e λ 4 + f λ 6 ,
β = P 1 E ,
α = β ( D F C G ) + C P 4 D P 3 C B D A ,
d = P 3 β F α A C .
P = P a lens + P p lens ( D · P a lens · P p lens ) n L ,

Metrics