Thin-film luminescent sensors were used to measure dissolved oxygen in picoliter volumes for the purpose of monitoring single-cell oxygen consumption rates, and that work served as the motivation for the development of the method described here. A few different platinum porphyrin sensor materials were examined, with all measurements conducted microscopically. By employing convolution theory to understand observed responses, including an unexpected red luminescent emission from an optic, we developed a new, rapid method for the determination of exponential decay lifetime. This new method of long-pulsed luminescence offers substantially improved signal-to-noise ratios for detected signals as long as self-illumination sources are carefully controlled in the experimental set-up.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription