Raw and roasted <i>Semen Cassiae</i> seeds, a complex traditional Chinese medicine (TCM), are used as examples to research and develop a method of classification analysis based on measurements of Fourier transform infrared (FT-IR) spectral fingerprints. Eighty samples of the TCM were measured in the mid-infrared range, 400–2000 cm<sup>−1</sup> (KBr pellets), and the complex overlapping spectra were submitted for interpretation to a principal component analysis least squares support vector machine (PC-LS-SVM), kernel principal component analysis least squares support vector machine (KPC-LS-SVM), and radial basis function artificial neural networks (RBF-ANN). The LS-SVM models were developed with an RBF kernel function and a grid search technique. Training models were constructed with the use of raw and first-derivative spectra and these were then verified by another data set containing both raw and roasted spectral objects. It was demonstrated that the first-derivative data set produced the best separation of the spectral objects. In general, satisfactory analytical performance was obtained with the PC-LS-SVM, KPC-LS-SVM, and RBF-ANN training models and with the classification of the verification spectral objects. With regard to chemometrics modeling, the performance of KPC-LS-SVM was somewhat more economical than that of the PC-LS-SVM model. It would appear that the latter relatively simple model would be sufficient for application to most small to medium sized FT-IR fingerprint data sets, but with larger matrices the more complex models, such as the RBF-ANN and KPC-LS-SVM, may be more advantageous on a computational basis.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription