Abstract

A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500 cm<sup>−1</sup>, enabling continuous detection of small volume gas-phase analytes such as CH<sub>4</sub>, CO<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>Cl, or their mixtures at trace levels. Ag/Ag-halide hollow core optical fibers simultaneously serve as an optical waveguide for broad-band mid-infrared radiation and as a miniaturized absorption gas cell. Specifically, carbon dioxide, methane, and ethyl chloride as well as binary mixtures in a carrier gas were analyzed during exponential dilution experiments. In the studies reported here, the integration of an optical gas sensor with FT-IR spectroscopy provides excellent detection limits for small gas volumes (∼1.5 mL) of individual analytes at a few tens of parts per billion (ppb, vol/vol) for carbon dioxide and a few hundreds of ppb (vol/vol) for methane. Furthermore, the broad-band nature of the radiation source and of the hollow core optical waveguide provides the capability of multi-constituent analysis in mixtures.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription