Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 9,
  • pp. 1001-1007
  • (2008)

Accurate Concentration Measurements Using Surface-Enhanced Raman and Deuterium Exchanged Dye Pairs

Not Accessible

Your library or personal account may give you access

Abstract

Quantitative applications of surface-enhanced resonance Raman scattering (SERRS) are often limited by the reproducibility of SERRS intensities, given the difficulty of controlling analyte–substrate interactions and the associated local field enhancement. As demonstrated here, SERRS from dye molecules even within the same structural class that compete with similar substrates display distinct spectral intensities that are not proportional to analyte concentrations, which limits their use as internal standardization probes and/or for multiplex analysis. Recently, we demonstrated that isotopic variants of rhodamine 6G (R6G), namely R6G-d0 and R6G-d4, can be used for internal standards in SERRS experiments with a linear optical response from picomolar to micromolar concentrations (of total analytes). Here we extend these results by describing a straightforward method for obtaining isotopomeric pairs of other Raman active dyes by hydrogen–deuterium exchange conditions for substitution at electron rich aromatic heterocycles. Most of the known SERRS active probes can be converted into the corresponding isotopomeric molecule by this exchange method, which significantly expands the scope of the isotopic edited internal standard (IEIS) approach. The relative quantification using IEIS enables accurate, reproducible (residual standard deviation ±2.2%) concentration measurements over a range of 200 pM to 2 μM. These studies enable easy access to a variety of isotopically substituted Raman active dyes and establish the generality of the methodology for quantitative SERRS measurements. For the first time, three rhodamine 6G isotopomers have been created and show distinct Raman spectra, demonstrating the principle of the approach for application as a multiplex technique in biomolecular detection/quantification.

PDF Article
More Like This
Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

Ming Li, Yong Du, Fusheng Zhao, Jianbo Zeng, Chandra Mohan, and Wei-Chuan Shih
Biomed. Opt. Express 6(3) 849-858 (2015)

Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering

Zhang Jie, Yin Zenghe, Gong Tiancheng, Luo Yunfei, Wei Dapeng, and Zhu Yong
Opt. Express 26(17) 22432-22439 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.