A method for decomposing complex emission spectra by correcting for known inner-filter effects is described. This approach builds on previous work using a linear combination of model emission spectra and combines the known absorption characteristics of the system to fit the composite emission spectrum. Rhod-2, which has a small Stokes shift and significant self-absorption, was used as the model system. By adding the absorption characteristics of Rhod-2 to the model, the degree of fit was significantly improved, thus minimizing residuals, and accurately predicted the spectral shape changes with increasing concentration, [Rhod-2]. More complex studies were conducted with Rhod-2 in isolated cardiac mitochondria with multiple emission and absorption elements. By including known absorbances to the spectral decomposition, the overall precision increased almost four fold. Moreover, this approach eliminated the significant [Rhod-2] dependence on the apparent K<sub>50</sub> and therefore improved the accuracy of free [Ca<sup>2+</sup>] calculations. These data demonstrate that secondary inner-filter correction can significantly improve spectral decomposition of complex emission spectra, which are used in a variety of biological applications.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription