Abstract

We investigated graphene-oxide-(GO-) coupled surface plasmon resonance (SPR) detection sensitivity for sandwiched antigen-antibody interaction between human and antihuman immunoglobulin G molecules. GO was prepared in a Langmuir–Blodgett solution on gold and dielectric surfaces. Theoretical and experimental data suggest that an increased dielectric spacer thickness reduces resonance shifts for GO-coupled SPR detection as dielectric properties of GO appear to prevail. In general, a metal-enhanced structure was shown to provide a larger resonance shift by plasmonic field enhancement. The far-field properties were described in terms of near-field overlap. The peak resonance shift that was obtained with GO-coupled SPR detection was enhanced to 113% of the resonance shift obtained by conventional thin-film-based SPR detection and may further be improved by GO stacking.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007).
    [CrossRef]
  2. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
    [CrossRef]
  3. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
    [CrossRef]
  4. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
    [CrossRef]
  5. B. Sepúlveda, A. Calle, L. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
    [CrossRef]
  6. J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
    [CrossRef]
  7. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
    [CrossRef]
  8. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
    [CrossRef]
  9. H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
    [CrossRef]
  10. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
    [CrossRef]
  11. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration,” Opt. Lett. 29, 2378–2380 (2004).
    [CrossRef]
  12. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
    [CrossRef]
  13. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
    [CrossRef]
  14. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355 (2011).
    [CrossRef]
  15. Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
    [CrossRef]
  16. Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
    [CrossRef]
  17. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
    [CrossRef]
  18. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
    [CrossRef]
  19. H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
    [CrossRef]
  20. C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
    [CrossRef]
  21. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
    [CrossRef]
  22. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [CrossRef]
  23. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011).
    [CrossRef]
  24. R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
    [CrossRef]
  25. K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
    [CrossRef]
  26. S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
    [CrossRef]
  27. Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
    [CrossRef]
  28. K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
    [CrossRef]
  29. Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
    [CrossRef]
  30. J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
    [CrossRef]
  31. X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
    [CrossRef]
  32. Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
    [CrossRef]
  33. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
    [CrossRef]
  34. J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
    [CrossRef]
  35. C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
    [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
    [CrossRef]
  38. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
    [CrossRef]
  39. C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
    [CrossRef]
  40. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
    [CrossRef]
  41. N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
    [CrossRef]
  42. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
    [CrossRef]
  43. L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
    [CrossRef]
  44. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
    [CrossRef]
  45. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
    [CrossRef]
  46. W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012).
    [CrossRef]
  47. Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
    [CrossRef]
  48. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
    [CrossRef]

2014 (1)

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

2013 (4)

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

2012 (6)

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012).
[CrossRef]

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

2011 (7)

2010 (9)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

2009 (3)

L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
[CrossRef]

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

2008 (2)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

2007 (1)

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (2)

2003 (3)

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

2001 (1)

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

2000 (3)

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

1998 (1)

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

1997 (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

1994 (1)

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

Ahluwalia, A.

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Armelles, G.

Bai, X.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Balci, S.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Bao, Q. L.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Bian, Y.

Bourlinos, A. B.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Byun, K. M.

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Calle, A.

Campbell, C. T.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007).
[CrossRef]

Caruso, F.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Chandra, V.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Chang, Y. W.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Chang, Y.-F.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Chen, H.-Y.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Chen, S.-J.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Chen, Y.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Chhowalla, M.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

Choi, J.-W.

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

Choi, S. H.

Chou, C.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Chu, C.-S.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Chu, H. S.

Chung, K.

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

Chyou, J.-J.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Clausen-Schaumann, H.

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

Corn, R. M.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Cote, L. J.

L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
[CrossRef]

Dai, H.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

de Rossi, D.

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Doumae, N.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

Eda, G.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

Edgar, J. A.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

El-Haija, A. J. A.

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

Fan, J.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Furlong, D. N.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Gao, S.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Geddes, N. J.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Georgakilas, V.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Goh, J. B.

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

Goh, M. C.

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

Gupta, B. D.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[CrossRef]

Haam, S.

Halpern, A. R.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Ho, H. P.

Hobza, P.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Hou, R.

Hsieh, B.-Y.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Hsieh, C.-H.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Huang, C.-F.

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

Huang, J.

L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
[CrossRef]

Huang, K.-T.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Ikariyama, Y.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

Im, S.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Jeong, D.-Y.

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Jha, R.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[CrossRef]

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Jung, W. K.

Kabashin, A. V.

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Kemp, K. C.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Kim, D.

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012).
[CrossRef]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355 (2011).
[CrossRef]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
[CrossRef]

Kim, D. H.

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

Kim, D. J.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, F.

L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
[CrossRef]

Kim, G.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007).
[CrossRef]

Kim, H. C.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Kim, K.

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, K. S.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Kim, N.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Kim, N.-H.

Kim, S. J.

Kim, W. M.

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Kim, Y.

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Kim, Y. L.

Kocabas, C.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Koh, W. S.

Kong, S. K.

Law, W. C.

Lechuga, L.

Lee, H.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

Lee, K.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

Lee, K.-S.

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Lee, T. S.

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Lee, W.

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012).
[CrossRef]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355 (2011).
[CrossRef]

Li, E. P.

Li, S.

Li, X.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Liang, R.-P.

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

Lin, C.

Lin, C.-H.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Lin, C.-Y.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Liu, J.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Liu, L.

Loh, K. P.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

Loo, R. W.

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

Lu, P.-L.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Lu, Z.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Lyon, L. A.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Ma, K.

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

Ma, X.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Martin, A. S.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Moon, S.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Oh, J.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Oh, Y.

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355 (2011).
[CrossRef]

Otyepka, M.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, Y. J.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Preininger, C.

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

Qiu, J.-D.

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

Ruoff, R. S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Salamon, Z.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Salihoglu, O.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Sambles, J. R.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Sepúlveda, B.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

Shih, Z.-H.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Shoji, A.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

Shu, S.-F.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Son, J. M.

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Song, D.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Song, L.

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Sreekanth, K. V.

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Su, Y.

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Sun, X.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Sun, Y.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Tam, P. L.

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

Than, K. A.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Tollin, G.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Toyama, S.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

Urquhart, R. S.

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Verma, R.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[CrossRef]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef]

Wan, Y.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
[CrossRef]

Wang, E.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Wang, K.

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Wang, X.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Wang, Y.

Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
[CrossRef]

Wang, Z.

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Wu, J.

Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
[CrossRef]

Wu, L.

Wu, S. Y.

Xu, X.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Yao, G.-H.

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

Yong, K.-T.

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

Yoo, K.-H.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Yoo, S.

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Yu, C.-J.

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Yu, H.

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

Yu, T.

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

Yun, C.-O.

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

Zboril, R.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

Zeng, S.

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

Zhang, D.

Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
[CrossRef]

Zhang, G.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Zhang, H.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Zhang, J.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Zhang, R.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Zheng, Z.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Zhu, J.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011).
[CrossRef]

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Adv. Mater. (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[CrossRef]

Anal. Biochem. (2)

J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003).
[CrossRef]

C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009).
[CrossRef]

Anal. Chem. (3)

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012).
[CrossRef]

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012).
[CrossRef]

Biomaterials (1)

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007).
[CrossRef]

Biophys. J. (2)

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef]

Biosens. Bioelectron. (4)

C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013).
[CrossRef]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013).
[CrossRef]

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[CrossRef]

Chem. Rev. (1)

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

J. Am. Chem. Soc. (2)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

J. Immunol. Methods (1)

N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008).
[CrossRef]

Nano Lett. (1)

J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010).
[CrossRef]

Nanotechnology (1)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Nat. Nanotechnol. (1)

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008).
[CrossRef]

Nature Chem. (1)

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003).
[CrossRef]

Quantum Electron. (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Sens. Actuators A (2)

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

Sens. Actuators B (4)

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[CrossRef]

K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013).
[CrossRef]

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000).
[CrossRef]

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012).
[CrossRef]

Sensors (1)

K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010).
[CrossRef]

Small (1)

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[CrossRef]

Talanta (1)

C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Optical schematic of GO-coupled SPR detection. The underlying gold film is 50 nm thick. The thickness of a SiO2 dielectric spacer is varied. For metal-enhanced SPR structure, the GO layer is replaced with gold. The interaction between a-h-IgG and h-IgG is modeled as a change of thickness. The thickness after the completion of sandwiched assay is 25 nm. (b) SEM image of GO flakes deposited by the Langmuir–Blodgett assembly method. Scale bar: 1 μm. The SEM image was taken on a silicon wafer to avoid the dielectric charging effect. A picture of a sample is shown in the inset. (c) AFM image and height profiles of GO flakes deposited on a glass substrate. The profiles along the dashed lines show that the thickness is approximately between 5 and 10 nm, indicating the deposition of multiple GO flakes.

Fig. 2.
Fig. 2.

Procedure of the sandwiched immunoassay. (a) The sample surface is initially carboxylate-modified. For preparation on GO, carboxyl modification was omitted. (b) Protein immobilization to the surface is followed by antibody binding of a-h-IgG. (c) The surface is treated with BSA to reduce nonspecific adsorption by reaction blocking. This is followed by (d) antigen binding of h-IgG and (e) subsequent antibody binding of a-h-IgG.

Fig. 3.
Fig. 3.

RRS calculated for GO-coupled and metal-enhanced SPR detection of sandwiched immunoassay as the dielectric spacer (SiO2) thickness is varied (GO-coupled detection, black line; metal-enhanced detection, red line). The arrows represent the increase of GO and gold layer thickness.

Fig. 4.
Fig. 4.

Tangential near-field amplitude profiles of |Ex| calculated for GO-coupled SPR detection: tSiO2 = (a) 0, (b) 40, and (c) 80 nm. The field amplitude was normalized by that of an incident light field. Also, for metal-enhanced SPR detection of sandwiched immunoassays: tSiO2 = (d) 0, (e) 40, and (f) 80 nm. Thickness of GO or gold: 0–10 nm. SI stands for sandwiched interaction.

Fig. 5.
Fig. 5.

GO-coupled SPR characteristics measured as the interactions progress in the sandwiched assay: tSiO2 = (a) 10 nm and (b) 20 nm. Each step made a positive resonance shift as shown in the insets. (1) a-h-IgG and (2) a-h-IgG represent the initial adsorption of IgG and the final binding of a-h-IgG to h-IgG, respectively. (c) Relative resonance shift normalized by that of a spacer-free (tSiO2=0nm) structure. The decrease of RRS was less severe for metal-enhanced SPR detection (red) than for GO-coupled SPR (black). For the metal-enhanced structure, a thicker metal layer increased RRS. In contrast, thicker GO reduced RRS, i.e., RRS is more localized with thicker GO. Experimental data fitted in a quadratic polynomial (blue, R=0.95118) show the decreasing trend of RRS, which is in fair agreement with theoretical results. The error bar represents standard deviation.

Metrics