Abstract

The effects of pore size on direction-averaged radiative properties of three-dimensionally ordered macroporous (3DOM) cerium dioxide (ceria) particles are investigated in the spectral range of 0.3–10 μm. The particles are of spherical shape and contain interconnected pores in a face-centered cubic lattice arrangement. The porous particle is modeled as a three-dimensional array of interacting dipoles using the discrete dipole approximation (DDA). The validity of the Lorenz–Mie theory to predict far-field radiative properties of a quasi-homogeneous particle with the effective optical properties obtained using the volume-averaging theory (VAT) is demonstrated. Direction-averaged extinction, scattering, and absorption efficiency factors as well as the scattering asymmetry factor are determined as a function of the pore size for a particle of 1 μm diameter and as a function of the particle size for pores of 400 nm diameter. The overlapping ordered pores in the 3DOM particles and the boundary effects in the presence of pores of size comparable to that of the particle are shown to affect the radiative properties in the ultraviolet to near-infrared spectral ranges. The effects of the 3DOM pore-level features on the far-field radiative properties are not captured by the Lorenz–Mie theory combined with VAT. Consequently, the use of advanced modeling tools such as DDA is necessary. In the mid- and far-infrared spectral ranges, the effects of 3DOM pore-level features on the far-field radiative properties diminish and the approach combining the Lorenz–Mie theory and VAT is shown to be accurate.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Abanades and G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides,” Sol. Energy 80, 1611–1623 (2006).
  2. W. Chueh and S. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. R Soc. A 368, 3269–3294 (2010).
    [CrossRef]
  3. W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
    [CrossRef]
  4. J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
    [CrossRef]
  5. L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
    [CrossRef]
  6. N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
    [CrossRef]
  7. K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
    [CrossRef]
  8. Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).
  9. K. Ganesan and W. Lipiński, “Experimental determination of spectral transmittance of porous cerium dioxide in the range 900–1700  nm,” J. Heat Transfer 133, 104501 (2011).
    [CrossRef]
  10. K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
    [CrossRef]
  11. L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
    [CrossRef]
  12. D. Vaidya and R. Gupta, “Composite grains: effects of porosity and inclusions on the 10 nm silicate feature,” J. Quant. Spectrosc. Radiat. Transfer 110, 1726–1732 (2009).
    [CrossRef]
  13. D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
    [CrossRef]
  14. N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
    [CrossRef]
  15. M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
    [CrossRef]
  16. M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
    [CrossRef]
  17. N. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
    [CrossRef]
  18. V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).
  19. J. Jackson, Classical Electrodynamics (Wiley, 1998).
  20. P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
    [CrossRef]
  21. F. Marabelli and P. Wachter, “Covalent insulator CeO2: optical reflectivity measurements,” Phys. Rev. B 36, 1238–1243 (1987).
  22. L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
    [CrossRef]
  23. A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
    [CrossRef]
  24. M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [CrossRef]
  25. P. Flatau and B. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  26. P. Flatau and B. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20, 1247–1252 (2012).
    [CrossRef]
  27. B. Draine and J. Goodman, “Beyond Clausius–Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
    [CrossRef]
  28. B. Draine and J. Weingartner, “Radiative torques on interstellar grains I: super thermal spin-up,” Astrophys. J. 470, 551–565 (1996).
    [CrossRef]
  29. H. van der Hulst, Light Scattering by Small Particles (Dover, 1981).
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  31. J. Hage and J. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).
    [CrossRef]
  32. A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008).
    [CrossRef]
  33. N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
    [CrossRef]
  34. A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
    [CrossRef]
  35. J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium,” Transp. Porous Media 39, 159–186 (2000).
    [CrossRef]
  36. J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems II: two-equation model,” Transp. Porous Media 39, 259–287 (2000).
    [CrossRef]

2013 (2)

K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
[CrossRef]

K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
[CrossRef]

2012 (4)

L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
[CrossRef]

J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
[CrossRef]

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

P. Flatau and B. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20, 1247–1252 (2012).
[CrossRef]

2011 (3)

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

K. Ganesan and W. Lipiński, “Experimental determination of spectral transmittance of porous cerium dioxide in the range 900–1700  nm,” J. Heat Transfer 133, 104501 (2011).
[CrossRef]

2010 (4)

W. Chueh and S. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. R Soc. A 368, 3269–3294 (2010).
[CrossRef]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
[CrossRef]

2009 (1)

D. Vaidya and R. Gupta, “Composite grains: effects of porosity and inclusions on the 10 nm silicate feature,” J. Quant. Spectrosc. Radiat. Transfer 110, 1726–1732 (2009).
[CrossRef]

2008 (1)

A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008).
[CrossRef]

2007 (5)

D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
[CrossRef]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

N. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
[CrossRef]

2006 (1)

S. Abanades and G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides,” Sol. Energy 80, 1611–1623 (2006).

2005 (1)

N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
[CrossRef]

2002 (1)

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
[CrossRef]

2000 (2)

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium,” Transp. Porous Media 39, 159–186 (2000).
[CrossRef]

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems II: two-equation model,” Transp. Porous Media 39, 259–287 (2000).
[CrossRef]

1998 (1)

M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
[CrossRef]

1996 (1)

B. Draine and J. Weingartner, “Radiative torques on interstellar grains I: super thermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

1994 (2)

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

P. Flatau and B. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1993 (1)

B. Draine and J. Goodman, “Beyond Clausius–Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[CrossRef]

1990 (1)

J. Hage and J. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).
[CrossRef]

1987 (1)

F. Marabelli and P. Wachter, “Covalent insulator CeO2: optical reflectivity measurements,” Phys. Rev. B 36, 1238–1243 (1987).

Abanades, S.

S. Abanades and G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides,” Sol. Energy 80, 1611–1623 (2006).

Abbott, M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Boman, D.

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Cheng, Y.

L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
[CrossRef]

Chueh, W.

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

W. Chueh and S. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. R Soc. A 368, 3269–3294 (2010).
[CrossRef]

Chueh, W. C.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Clayton, G.

M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
[CrossRef]

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

Coquil, T.

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

Davidson, J.

J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
[CrossRef]

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Davidson, J. H.

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

Dombrovsky, L.

K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
[CrossRef]

L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
[CrossRef]

Draine, B.

P. Flatau and B. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20, 1247–1252 (2012).
[CrossRef]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

B. Draine and J. Weingartner, “Radiative torques on interstellar grains I: super thermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

P. Flatau and B. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

B. Draine and J. Goodman, “Beyond Clausius–Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[CrossRef]

Falter, C.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Flamant, G.

S. Abanades and G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides,” Sol. Energy 80, 1611–1623 (2006).

Flatau, P.

Furler, P.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Ganesan, K.

K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
[CrossRef]

K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
[CrossRef]

L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
[CrossRef]

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

K. Ganesan and W. Lipiński, “Experimental determination of spectral transmittance of porous cerium dioxide in the range 900–1700  nm,” J. Heat Transfer 133, 104501 (2011).
[CrossRef]

Garahan, A.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

Gibson, S.

M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
[CrossRef]

Goodman, J.

B. Draine and J. Goodman, “Beyond Clausius–Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[CrossRef]

Greenberg, J.

J. Hage and J. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).
[CrossRef]

Gupta, R.

D. Vaidya and R. Gupta, “Composite grains: effects of porosity and inclusions on the 10 nm silicate feature,” J. Quant. Spectrosc. Radiat. Transfer 110, 1726–1732 (2009).
[CrossRef]

D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
[CrossRef]

Hage, J.

J. Hage and J. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).
[CrossRef]

Haile, S.

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

W. Chueh and S. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. R Soc. A 368, 3269–3294 (2010).
[CrossRef]

Haile, S. M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Henning, T.

N. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
[CrossRef]

N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
[CrossRef]

Hoekstra, A.

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

Hoekstra, A. G.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Hutchinson, N.

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

Il’in, V.

N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
[CrossRef]

Jackson, J.

J. Jackson, Classical Electrodynamics (Wiley, 1998).

Ji, G.

L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
[CrossRef]

Lapp, J.

J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
[CrossRef]

Liang, Z.

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

Lipinski, W.

K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
[CrossRef]

K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
[CrossRef]

L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
[CrossRef]

J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
[CrossRef]

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

K. Ganesan and W. Lipiński, “Experimental determination of spectral transmittance of porous cerium dioxide in the range 900–1700  nm,” J. Heat Transfer 133, 104501 (2011).
[CrossRef]

V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).

Logothetidis, S.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
[CrossRef]

Lumme, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Marabelli, F.

F. Marabelli and P. Wachter, “Covalent insulator CeO2: optical reflectivity measurements,” Phys. Rev. B 36, 1238–1243 (1987).

Martin, P.

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

Metaxa, C.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
[CrossRef]

Muinonen, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Navid, A.

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008).
[CrossRef]

Patsalas, P.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
[CrossRef]

Penttilä, A.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Petkovich, N.

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Pilon, L.

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008).
[CrossRef]

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

Rahola, J.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Randrianalisoa, J.

K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
[CrossRef]

V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).

Río, J.

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium,” Transp. Porous Media 39, 159–186 (2000).
[CrossRef]

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems II: two-equation model,” Transp. Porous Media 39, 259–287 (2000).
[CrossRef]

Rudisill, S.

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Saxena, I.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

Schulte-Ladbeck, R.

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

Scipio, D.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Shkuratov, Y.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Snow, T.

D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
[CrossRef]

Stein, A.

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Steinfeld, A.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Sun, L.

L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
[CrossRef]

Tamma, K.

V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).

Vaidya, D.

D. Vaidya and R. Gupta, “Composite grains: effects of porosity and inclusions on the 10 nm silicate feature,” J. Quant. Spectrosc. Radiat. Transfer 110, 1726–1732 (2009).
[CrossRef]

D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
[CrossRef]

van der Hulst, H.

H. van der Hulst, Light Scattering by Small Particles (Dover, 1981).

Venstrom, L.

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

Venstrom, L. J.

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

Videen, G.

Voshchinnikov, N.

N. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
[CrossRef]

N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
[CrossRef]

Wachter, P.

F. Marabelli and P. Wachter, “Covalent insulator CeO2: optical reflectivity measurements,” Phys. Rev. B 36, 1238–1243 (1987).

Weingartner, J.

B. Draine and J. Weingartner, “Radiative torques on interstellar grains I: super thermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

Wheeler, V.

V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).

Whitaker, S.

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium,” Transp. Porous Media 39, 159–186 (2000).
[CrossRef]

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems II: two-equation model,” Transp. Porous Media 39, 259–287 (2000).
[CrossRef]

Wolff, M.

M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
[CrossRef]

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

Yin, J.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

Yurkin, M.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

Zubko, E.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81, 466–468 (2002).
[CrossRef]

Astron. Astrophys. (1)

N. Voshchinnikov, V. Il’in, and T. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371–381 (2005).
[CrossRef]

Astrophys. J. (5)

M. Wolff, G. Clayton, P. Martin, and R. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412–425 (1994).
[CrossRef]

M. Wolff, G. Clayton, and S. Gibson, “Modeling composite and fluffy grains. II. Porosity and phase functions,” Astrophys. J. 503, 815–830 (1998).
[CrossRef]

B. Draine and J. Goodman, “Beyond Clausius–Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[CrossRef]

B. Draine and J. Weingartner, “Radiative torques on interstellar grains I: super thermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

J. Hage and J. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).
[CrossRef]

Comput. Therm. Sci. (1)

L. Dombrovsky, K. Ganesan, and W. Lipiński, “Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials,” Comput. Therm. Sci. 4, 365–378 (2012).
[CrossRef]

Energy (1)

J. Lapp, J. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37, 591–600 (2012).
[CrossRef]

Exp. Heat Transf. (1)

Z. Liang, W. Chueh, K. Ganesan, S. Haile, and W. Lipiński, “Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300–1100  nm,” Exp. Heat Transf. 24, 285–299 (2011).

Infrared Phys. Technol. (1)

K. Ganesan, L. Dombrovsky, and W. Lipiński, “Visible and near-infrared optical properties of ceria ceramics,” Infrared Phys. Technol. 57, 101–109 (2013).
[CrossRef]

J. Appl. Phys. (1)

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101, 014320 (2007).
[CrossRef]

J. At. Mol. Sci. (1)

L. Sun, Y. Cheng, and G. Ji, “Elastic and optical properties of CeO2 via first principles calculations,” J. At. Mol. Sci. 1, 143–151 (2010).
[CrossRef]

J. Heat Transfer (2)

K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer 135, 122701 (2013).
[CrossRef]

K. Ganesan and W. Lipiński, “Experimental determination of spectral transmittance of porous cerium dioxide in the range 900–1700  nm,” J. Heat Transfer 133, 104501 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

N. Petkovich, S. Rudisill, L. Venstrom, D. Boman, J. Davidson, and A. Stein, “Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity,” J. Phys. Chem. C 115, 21022–21033 (2011).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

D. Vaidya and R. Gupta, “Composite grains: effects of porosity and inclusions on the 10 nm silicate feature,” J. Quant. Spectrosc. Radiat. Transfer 110, 1726–1732 (2009).
[CrossRef]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[CrossRef]

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

J. Sol. Energy Eng. (1)

L. J. Venstrom, N. Petkovich, S. Rudisill, A. Stein, and J. H. Davidson, “The effects of morphology on the oxidation of ceria by water and carbon dioxide,” J. Sol. Energy Eng. 134, 011005 (2012).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

D. Vaidya, R. Gupta, and T. Snow, “Composite interstellar grains,” Mon. Not. R. Astron. Soc. 379, 791–800 (2007).
[CrossRef]

Opt. Express (1)

Philos. Trans. R Soc. A (1)

W. Chueh and S. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. R Soc. A 368, 3269–3294 (2010).
[CrossRef]

Phys. Rev. B (1)

F. Marabelli and P. Wachter, “Covalent insulator CeO2: optical reflectivity measurements,” Phys. Rev. B 36, 1238–1243 (1987).

Science (1)

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330, 1797–1801 (2010).
[CrossRef]

Sol. Energy (1)

S. Abanades and G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides,” Sol. Energy 80, 1611–1623 (2006).

Thin Solid Films (2)

A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008).
[CrossRef]

N. Hutchinson, T. Coquil, A. Navid, and L. Pilon, “Effective optical properties of highly ordered mesoporous thin films,” Thin Solid Films 518, 2141–2146 (2010).
[CrossRef]

Transp. Porous Media (2)

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium,” Transp. Porous Media 39, 159–186 (2000).
[CrossRef]

J. Río and S. Whitaker, “Maxwell’s equations in two-phase systems II: two-equation model,” Transp. Porous Media 39, 259–287 (2000).
[CrossRef]

Other (4)

H. van der Hulst, Light Scattering by Small Particles (Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

V. Wheeler, J. Randrianalisoa, K. Tamma, and W. Lipiński, “Spectral radiative properties of three-dimensionally ordered macroporous ceria particles,” J. Quant. Spectrosc. Radiat. Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.08.007 (to be published).

J. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Model spherical 3DOM ceria particle of radius r exposed to an external plane electromagnetic wave.

Fig. 2.
Fig. 2.

Interparticle 3DOM ceria structure with the FCC lattice constant a and the pore diameter d.

Fig. 3.
Fig. 3.

Real and imaginary parts of the complex refractive index of ceria in the spectral range of 0.29–1.5 μm from [20], and our extrapolation in the range of 1.5–10 μm.

Fig. 4.
Fig. 4.

3DOM ceria particles oriented along the major symmetry planes of the FCC lattice: (a) ϑ=0° and φ=0°, (b) ϑ=0° and φ=45°, and (c) ϑ=45° and φ=45°.

Fig. 5.
Fig. 5.

DDA geometrical representation of the model 3DOM ceria particles of 2r=1μm diameter and selected pore sizes (a) d=60nm, (b) d=100nm, (c) d=185nm, (d) d=304nm, and (e) d=496nm.

Fig. 6.
Fig. 6.

Effects of pore size on the spectral radiative properties of 3DOM ceria particles: (a) absorption efficiency factor, (b) scattering efficiency factor, and (c) scattering asymmetry factor.

Fig. 7.
Fig. 7.

Effects of the 3DOM ceria particle diameter on the spectral radiative properties for pore sizes of d400nm: (a) absorption efficiency factor, (b) scattering efficiency factor, and (c) scattering asymmetry factor. The number at each main peak indicates the value of phase lag 2x|meff1|. Curves: Mie–VAT results and symbols: DDA results.

Tables (2)

Tables Icon

Table 1. Simulation Parameters for Analysis of the Pore Size Effect

Tables Icon

Table 2. Simulation Parameters for Analysis of the Particle Size Effect

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

l<12max(|m|η),
j=1NAijP⃗j=E⃗inc,i,
Qext=4ηEinc2r2i=1NIm(E⃗inc,i*·P⃗i),
Qabs=4ηEinc2r2i=1N{Im[P⃗i·(αi1)*P⃗i*]23η3|P⃗i|2},
Qsca=η4Einc2πr24π|i=1N[P⃗in⃗(n⃗·P⃗i)]exp(iηn⃗·r⃗i)|2dΩ,
g=η3Einc2Qscaπr24πn⃗·z⃗|i=1N[P⃗in⃗(n⃗·P⃗i)]exp(iηn⃗·r⃗i)|2dΩ,
Qext=2η2r2n=0(2n+1)(|an|2+|bn|2),
Qsca=2η2r2n=0(2n+1)Re(an+bn),
Qabs=QextQsca,
g=2Qscaη2r2n=0{n(n+2)n+1Re(anan+1*+bnbn+1*)+2n+1n(n+1)Re(anbn*)},
neff=12(A+A2+B2),keff=12(A+A2+B2),
A=fv+(1fv)(n2k2),B=2(1fv)nk.
Δλ={0.033μmforλ=0.30.6μm0.05μmforλ=0.61.1μm0.2μmforλ=1.11.9μm1μmforλ=2.010μm.

Metrics