Abstract

We demonstrated a three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate consisting of large area carbon nanotube (CNT) arrays coated by gold-sol nanoparticles. A low-cost, simple process is used to prepare Au-decorated 3D CNT arrays. The SERS enhancement from the 3D CNT arrays, and two-dimensional (2D) CNT films substrates coated by different size gold-sol nanoparticles, was experimentally verified with Rhodamine 6G as the probe analyte. The experiments showed that the 3D CNT arrays substrate has a higher Raman enhancement compared with 2D CNT arrays substrate and planar glass substrate, due to the large specific surface area of CNT arrays and more gold nanoparticles on the CNT arrays sidewalls, which contribute the electromagnetic field and Raman intensity. Meanwhile, the 3D structure could enhance the excitation light trapping in CNT arrays, consequently increasing the light interaction with Au nanoparticles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
    [CrossRef]
  3. Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
    [CrossRef]
  4. L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
    [CrossRef]
  5. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
    [CrossRef]
  6. S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
    [CrossRef]
  7. C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
    [CrossRef]
  8. J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
    [CrossRef]
  9. Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
    [CrossRef]
  10. S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
    [CrossRef]
  11. G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
    [CrossRef]
  12. X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
    [CrossRef]
  13. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19, 3925–3936 (2011).
    [CrossRef]
  14. M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
    [CrossRef]
  15. M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
    [CrossRef]
  16. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [CrossRef]
  17. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973).
    [CrossRef]
  18. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
    [CrossRef]
  19. Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
    [CrossRef]
  20. L. Liz-Marzán, “Nanometals: formation and color,” Mater. Today 7(2), 26–31 (2004).
    [CrossRef]
  21. P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
    [CrossRef]
  22. J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
    [CrossRef]
  23. X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
    [CrossRef]
  24. X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
    [CrossRef]
  25. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984).
    [CrossRef]
  26. C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
    [CrossRef]
  27. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
    [CrossRef]
  28. R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
    [CrossRef]

2013 (1)

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

2012 (4)

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

2011 (3)

W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19, 3925–3936 (2011).
[CrossRef]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

2010 (4)

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

2009 (2)

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

2008 (5)

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[CrossRef]

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

2007 (1)

R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
[CrossRef]

2006 (1)

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

2004 (1)

L. Liz-Marzán, “Nanometals: formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

2003 (1)

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

1999 (1)

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

1984 (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984).
[CrossRef]

1977 (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973).
[CrossRef]

Ai, K. L.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Ajayan, P. M.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Becker, M.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Berlin, A. A.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Cai, W. P.

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

Cao, L. Y.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Chan, S.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Chen, G.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Chen, M.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Chen, Y. L.

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

Cheng, C. W.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Chipara, A. C.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Cho, S. J.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Choi, C. J.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Chou, S. Y.

Christiansen, S. H.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Ciesielski, P. N.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Cui, Y.

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

Cunningham, B. T.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

DiLeo, R. A.

R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
[CrossRef]

Ding, F.

Duan, G. T.

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

Emory, S. R.

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

Escobar, C. A.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Fan, H. J.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Fan, S. S.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Fan, T.

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

Fan, X. D.

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

Fang, P. P.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Faulds, K.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973).
[CrossRef]

Gösele, U. G.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Graham, D.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Gudrun, A.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Guerrini, L.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Guo, Y. B.

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

Hafner, J. H.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Hahm, M. G.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Hashim, D. P.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984).
[CrossRef]

Hirata, A.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Hoffmann, S.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Hu, J.

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Jennings, G. K.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Jiang, K. L.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Jiao, Y.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Jin, Z.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Jo, Y.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Kang, Y. J.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Khaing Oo, M. K.

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

Kim, S.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[CrossRef]

Koo, T. W.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Krpetic, Z.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Krug, J. T.

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

Kwon, S.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Landi, B. J.

R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
[CrossRef]

Lang, X.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Larmour, I. A.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Lee, H.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Lee, L. P.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Lee, M. K.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Lee, S.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Lei, Y.

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

Li, J. F.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Li, L. M.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Li, Q. Q.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Li, W. D.

Li, X.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Li, X. L.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Lin, X. M.

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

Liu, G. L.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Liu, J.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Liu, K.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Liu, X. J.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Liz-Marzán, L.

L. Liz-Marzán, “Nanometals: formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

Lu, L. H.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Luo, Y. Y.

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Miao, J.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Michler, J.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Nie, S. M.

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

Raffaelle, R. P.

R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
[CrossRef]

Reddy, K.

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

Reglinski, J.

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

Reich, H. J.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Ren, B.

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Ryckman, J. D.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Seo, J.

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Shen, Z. X.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[CrossRef]

Sivakov, V.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Stelzner, T.

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Stockburger, M.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984).
[CrossRef]

Sun, H. M.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Sun, Y. H.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Thurakitseree, T.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Tian, B. Z.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Tian, Z. Q.

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[CrossRef]

Vajtai, R.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Wang, G. D.

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

Wang, H. S.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Wang, Z. Y.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Weiss, S. M.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Wong, S. M.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Wu, D. Y.

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

Wu, H. Y.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Xu, Y. H.

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

Xu, Z.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Yan, B.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Yang, L.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Yang, Z. L.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Yu, H. Y.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Yu, T.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Zhang, B. H.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Zhang, G.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Zhang, J.

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

Zhang, L.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Zhang, L. N.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Zhao, X. M.

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

Zhou, W. W.

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

Zhu, Y.

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

ACS Appl. Mater. (1)

C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010).
[CrossRef]

ACS Nano (2)

Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[CrossRef]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010).
[CrossRef]

Adv. Mater. (2)

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012).
[CrossRef]

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003).
[CrossRef]

Anal. Bioanal. Chem. (1)

X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Chem. Soc. Rev. (1)

D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999).
[CrossRef]

J. Appl. Phys. (1)

R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

J. Mater. Chem. (1)

X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009).
[CrossRef]

J. Phys. Chem. (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984).
[CrossRef]

J. Raman Spectrosc. (1)

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008).
[CrossRef]

Key Eng. Mat. (1)

J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013).
[CrossRef]

Mater. Lett. (1)

M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012).
[CrossRef]

Mater. Today (1)

L. Liz-Marzán, “Nanometals: formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

Nano Lett. (1)

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010).
[CrossRef]

Nanotechnology (2)

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).
[CrossRef]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011).
[CrossRef]

Nat. Phys. Sci. (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973).
[CrossRef]

Opt. Express (1)

Small (3)

M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008).
[CrossRef]

Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012).
[CrossRef]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

3D CNT arrays coated by Au-sol nanoparticles in 3D laser incident focus volume.

Fig. 2.
Fig. 2.

Surface areas of three substrates on the same planar area (SPlanar=L1L2), where SPlanar, SCNTF, SCNTA are the total surface areas of the planar, CNT films, and CNT array substrates, respectively; L1, L2 are the side lengths of the planar substrate, D is the diameter of the CNT, H is the length/height of the CNT, and d is the center distance of two CNTs when forming films and arrays.

Fig. 3.
Fig. 3.

SEM photo of Au nanoparticles decorated on the CNT arrays.

Fig. 4.
Fig. 4.

Au element distribution on the sample by energy dispersive spectrometer (red dot means the distribution of Au element).

Fig. 5.
Fig. 5.

Raman intensity of R6G at different concentrations (103M, 105M, and 106M) with CNT arrays coated by Au nanoparticles (65 nm diameter) as substrate.

Fig. 6.
Fig. 6.

Raman intensity of R6G at a concentration of (a) 105M adsorbed on three different substrates (CNT arrays/Au, CNT films/Au, glass/Au substrates), (b) 106M adsorbed on two CNT substrates, with the Au nanoparticle diameter at 80 nm.

Fig. 7.
Fig. 7.

Raman intensity of R6G (106M) while 3D CNT arrays coated by Au nanoparticles (30, 65, and 80 nm diameter).

Fig. 8.
Fig. 8.

Raman intensity of R6G (105M) with (a) planar glass and (b) 2D CNT films coated by Au nanoparticles (30, 65, and 80 nm diameter) as substrates.

Tables (4)

Tables Icon

Table 1. Characterized Raman Peaks

Tables Icon

Table 2. Typical Raman Peaks Intensity at Different Concentrations

Tables Icon

Table 3. Typical Raman Peaks Intensity with Different Substrates

Tables Icon

Table 4. Typical Raman Peaks Intensity with Different Size Au Nanoparticles

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EF=ISERSNSERSI0N0,
ISERS(ωs)=NAΩdσ(ωs)dΩPL(ωL)[ε(ωL)]1Q(ωs)TmT0EF,
SCNTF=π2L1L2=π2SPlanar,
SCNTA=π4HDL1L2=(π4HD)SPlanar.

Metrics