Abstract

Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07mg/m3), detecting changes smaller than 0.01mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6<CHL<4.5), the proposed system is found sensitive to changes (in CHL) smaller than 0.1mg/m3 when the air mass fraction (AMF) is less than 5. For aCDOM(440), detecting the changes larger than 0.02m1 (0.08<aCDOM(440)<0.36) is found feasible for most of the imaging geometries. This is equivalent to AMF<5. For TSS, changes on the order of ΔTSS=0.1g/m3 (0.5<TSS<4.5) are detectable from early morning to late afternoon across the entire FOR. This study gives insights into the radiometric sensitivity of the GEO-CAPE mission in identifying the changes in bio-optical properties at top-of-atmosphere (TOA), which aids in a more lucid understanding of the uncertainties associated with the surface products.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Air Quality and Ocean Color from Space: GEO-CAPE,” NASA, 2013, http://geo-cape.larc.nasa.gov/ .
  2. J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
    [CrossRef]
  3. A. Mannino, Preliminary specifications for a strawman Coastal Ecosystem Mission (CEM) sensor (NASA, 2013).
  4. J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
    [CrossRef]
  5. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
    [CrossRef]
  6. Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
    [CrossRef]
  7. Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
    [CrossRef]
  8. G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
    [CrossRef]
  9. G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
    [CrossRef]
  10. N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
    [CrossRef]
  11. J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
    [CrossRef]
  12. C. D. Mobley, L. K. Sundman, Hydrolight 5, Ecolight5 User Guide (Sequoia Scientific, 2008).
  13. Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
    [CrossRef]
  14. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [CrossRef]
  15. G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
  16. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef]
  17. K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
  18. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
    [CrossRef]
  19. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef]
  20. M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
    [CrossRef]
  21. M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012), p. 748.
  22. J. R. Schott, Remote Sensing: the Image Chain Approach, 2nd ed. (Oxford University, 2007), p. 666.
  23. R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
    [CrossRef]
  24. D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
    [CrossRef]
  25. T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
    [CrossRef]

2013 (1)

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

2012 (7)

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
[CrossRef]

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
[CrossRef]

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
[CrossRef]

2011 (1)

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

2010 (1)

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

2009 (1)

2006 (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

2005 (1)

K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).

2002 (1)

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

2001 (1)

1999 (1)

1996 (1)

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

1994 (2)

1993 (1)

Abbott, M. R.

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Ahn, Y.-H.

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Al-Saadi, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Arnone, R.

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Bailey, S. W.

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Bernard, E.

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Campbell, J.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Castaing, P.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Chance, K.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Chapron, B.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Chavez, F.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Chetwynd, J. J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Chin, M.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Cho, S.

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Coble, P.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Davis, C.

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Davis, C. O.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
[CrossRef]

Deschamps, P.-Y.

DiGiacomo, P. M.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Doxaran, D.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Edwards, D.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Eismann, M. T.

M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012), p. 748.

Eldering, A.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Feng, L.

Fishman, J. I.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Forand, J. L.

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).

Fournier, G. R.

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Franz, B. A.

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Gentili, B.

Goes, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Good, W.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Gordon, H. R.

Greenwood, N.

G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
[CrossRef]

Han, H.-J.

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Hardesty, C.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Herman, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Hu, C.

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
[CrossRef]

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Hunt, C.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Iraci, L. T.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Jacob, D. J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Jiang, M.

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

Jin, Z.

Jordan, C.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Kattawar, G. W.

Kawa, S. R.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Key, R.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Lee, Z.

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
[CrossRef]

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Letelier, R. M.

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Lewis, M.

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Li, Y.

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Liu, X.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Lohrenz, S.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Lubac, B.

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Ma, R.

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

Mannino, A.

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012).
[CrossRef]

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

A. Mannino, Preliminary specifications for a strawman Coastal Ecosystem Mission (CEM) sensor (NASA, 2013).

McClain, C. R.

Min, J.-E.

Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
[CrossRef]

Mobley, C. D.

Morel, A.

K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Natraj, V.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Nechad, B.

Neil, D.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Neu, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Neukermans, G.

G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
[CrossRef]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
[CrossRef]

Newchurch, M.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Pahlevan, N.

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

Park, Y.-J.

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Pickering, K.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Ramon, D.

Reinersman, P.

Reul, N.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Ruddick, K.

Ruddick, K. G.

G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
[CrossRef]

Ryu, J.-H.

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
[CrossRef]

Salisbury, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Schott, J. R.

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

J. R. Schott, Remote Sensing: the Image Chain Approach, 2nd ed. (Oxford University, 2007), p. 666.

Shang, S.

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Shettle, E. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

Son, Y.

Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
[CrossRef]

Sosik, H.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Spuhler, P.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Stamnes, K.

Stavn, R. H.

Stephens, M.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Subramaniam, A.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Sundman, L. K.

C. D. Mobley, L. K. Sundman, Hydrolight 5, Ecolight5 User Guide (Sequoia Scientific, 2008).

Tufillaro, N.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Tzortziou, M.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Valle, T.

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Vandemark, D.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Voss, K. J.

K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).

Wang, J.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

Wang, M.

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef]

Wisser, D.

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Appl. Opt. (5)

Bull. Am. Meteorol. Soc. (1)

J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012).
[CrossRef]

J. Geophys. Res. Oceans (2)

J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011).
[CrossRef]

Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010).
[CrossRef]

Limnol. Oceanogr. (1)

K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).

Ocean Sci. J. (3)

J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012).
[CrossRef]

Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012).
[CrossRef]

Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012).
[CrossRef]

Opt. Express (1)

Proc SPIE (1)

N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013).
[CrossRef]

Proc. SPIE (3)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
[CrossRef]

G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).

T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012).
[CrossRef]

Remote Sens. Environ. (3)

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012).
[CrossRef]

Other (5)

“Air Quality and Ocean Color from Space: GEO-CAPE,” NASA, 2013, http://geo-cape.larc.nasa.gov/ .

A. Mannino, Preliminary specifications for a strawman Coastal Ecosystem Mission (CEM) sensor (NASA, 2013).

C. D. Mobley, L. K. Sundman, Hydrolight 5, Ecolight5 User Guide (Sequoia Scientific, 2008).

M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012), p. 748.

J. R. Schott, Remote Sensing: the Image Chain Approach, 2nd ed. (Oxford University, 2007), p. 666.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) SNR curve overlaid on the corresponding L typ spectrum modeled based upon the preliminary science/engineering design. (b) Geometric configuration for the in-water and atmospheric RT modeling for the planned GEO-CAPE mission. (c) Spectral shapes of the IOPs (normalized to 440 nm). Here, a min , b min are the absorption and scattering coefficients of minerals (TSS) and a ph , b ph represent absorption and scattering coefficients of phytoplankton.

Fig. 2.
Fig. 2.

Locations (A to E) within the FOR (observational disk) currently planned for the GEO-CAPE mission. The red dots represent the locations viewed from the imaging device. The simulations presented in this study are carried out for these geographic locations to span a broad range of sun-sensor geometry. The platform is projected at the center of the disk on the 2D plane.

Fig. 3.
Fig. 3.

Hemispherical distribution of R r s + 0 (top) and R r s + 0 + R r (bottom) associated with clear ocean waters depicted for three different solar geometries. The sun is located at ϕ = 90 ° , where R r s + 0 exhibits peak values (top row). The total reflectance ( R r s + 0 + R r ) includes the sun + sky glint effects. Note that the simulations are evaluated at λ = 410 nm .

Fig. 4.
Fig. 4.

Demonstration of the computation of differential SNR metric, i.e., Δ SNR , for two viewing angles, i.e., θ v = 15 ° and θ v = 70 ° . (a) The water-leaving radiances ( L w ) observed for two neighboring pixels whose CHL differs by 0.2 mg / m 3 when CHL ¯ = 1.3 mg / m 3 , i.e., OAC ( Δ CHL = 0.2 , 1.3 , 0.18 , 1.0 ) . The (a) water-leaving radiances and (b) transmitted spectra are shown. (c) The large noise contribution in the UV further suppresses the transmitted signal. (d) The Δ SNR ( λ ) curves signify how well Δ CHL = 0.2 , i.e., 15% change in CHL, is detectable across the spectrum.

Fig. 5.
Fig. 5.

Diurnal signal detectability curves, i.e., Δ SNR ( Δ CHL , 2.4 , 0.18 , 2.0 ) , are shown for various viewing angles associated with locations B, C, D, and E (Fig. 2), respectively. While for viewing angles of 15° and 40° (a, b), the magnitude of the detectability is found similar, it drops 30 % , on average, at large viewing angles (c, d). (d) At very large viewing angles and low sun angles, Δ CHL = ± 0.2 results in changes in signal just above noise level, i.e., Δ SNR 2 .

Fig. 6.
Fig. 6.

Diurnal signal detectability curves given for three different water types, i.e., OAC ( Δ CHL , CHL , a CDOM , TSS ) , when θ v = 60 ° . Note that the peak of Δ SNR ( λ ) , i.e., the y axes, is different for the three plots. (a) The small changes on the order of Δ CHL = ± 0.02 are found to be detectable for most hours at such a large viewing angle. The signal detectability is the lowest in (a) very clear waters and (c) relatively turbid waters. For both cases in (a) and (c), the detectability is limited in the late afternoon. In general, ΔSNR shows largest magnitudes for (b) relatively clear waters, i.e., OAC ( Δ CHL , 0.6 , 0.018 , 0.05 ) .

Fig. 7.
Fig. 7.

Diurnal detection limits ( δ CHL hr ) are shown for four different water types at viewing angles of (a, b) 60° and 70°. While the detection limit is nearly similar between the hours of 1000–1530, it deteriorates in the early morning and late afternoon. The detectability is shown as a function of AMFs for (c) coastal and (d) oceanic waters. The detectability declines (nearly exponentially) as AMF increases. (d) All of the observations at locations A, B, C, and D ( θ v 60 ° ) achieve δ CHL < 0.01 mg / m 3 . However, in coastal waters (c), δ CHL < 0.1 mg / m 3 can be achieved for most observations except those made late afternoon/early morning, when θ v 60 ° .

Fig. 8.
Fig. 8.

Spectral signal detectability, Δ SNR ( λ ; Δ a CDOM ) , shown for two different water types (left column versus right) and imaging geometries ( θ v = 15 ° and θ v = 60 ° ) at the hour of 1400 (locations A and D). The Δ SNR ( λ ) is shown for various levels of changes in Δ a CDOM . The maximum change rate, i.e., max ( Δ a CDOM ) = 0.0072 , is the equivalent of 9% and 2% change for the left and right columns, respectively. (d) The ability to detect the maximum change is limited for the larger viewing angle. Note that Δ SNR ( λ ; Δ a CDOM ) is evaluated at λ = 400 nm .

Fig. 9.
Fig. 9.

Hourly detection limits ( δ a CDOM hr ) shown for three viewing angles when imaging four different water types. The signal detectability improves for waters of high TSS load (due to the increase in overall signal). The detection limit versus AMF is shown in (d) where different types of waters are shown with a different symbol (note the legend in (a)). The detection limits are evaluated at λ = 400 nm .

Fig. 10.
Fig. 10.

Spectral signal detectability, Δ SNR ( λ ; Δ TSS ) , shown for early morning observations for two different water types (left versus right) and viewing angles (top versus bottom). The detectability for Δ TSS = ± 0.1 is found feasible ( Δ SNR > 1 ) for such imaging geometries. Although Δ SNR curves show maxima at λ 550 nm , the metric is evaluated at λ = 650 nm to avoid interference induced by CHL or a CDOM .

Fig. 11.
Fig. 11.

Hourly detection limits ( δ TSS hr ) shown for three viewing angles when imaging four different water types, to indicate how the impact of change in the viewing angle affects the detectability. The signal detectability is the lowest for the late afternoon observations (particularly for the most turbid waters). (d) Detection limit shown as a function of AMF, where four different symbols are used to represent different water types [note the legend in (a)]. The detection limit rises with the increase in AMF.

Fig. 12.
Fig. 12.

Impact of changes in AOT (550) on daily average signal detectability, i.e., Δ SNR ¯ ( Δ a CDOM ) . The impact is more pronounced for larger viewing angles, e.g., 15% reduction in Δ SNR ¯ for θ v = 70 ° when AOT changes from 0.2 to 0.5. The impact is, on average, 6 % for ± 0.1 change in AOT, for mean AOT = 0.2 .

Tables (1)

Tables Icon

Table 1. AMF and Sun-Sensor Azimuth Angle ( Δ ϕ ) Specified for Different Local Hours and Locations A, B, C, D, and E, for which Radiometric Simulations are Performed

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = L w + L r E d + 0 = R r s + 0 + R r [ sr 1 ] ,
L t = { t ( L w + L r ) } + { L path } + { T L g } ,
SNR ( p 1 ) = SNR typ L t ( p 1 ) L typ ,
N ( p 1 ) = L t ( p 1 ) SNR ( p 1 ) [ W / ( m 2 sr μm ) ] .
N = ( N p ) 2 + N ROC 2 + N q 2 + N spatial 2 ,
Δ SNR ( λ ; θ v , θ s , Δ ϕ , AOT , Δ OAC ) = | t Δ L w | N = t | L w ( p 1 ) L w ( p 2 ) | N .

Metrics