Abstract

In multispectral color imaging, there is a demand to select a reduced number of optimal imaging channels to simultaneously speed up the image acquisition process and keep reflectance reconstruction accuracy. In this paper, the channel selection problem is cast as the binary optimization problem, and is consequently solved using a novel binary differential evolution (DE) algorithm. In the proposed algorithm, we define the mutation operation using a differential table of swapping pairs, and deduce the trial solutions using neighboring self-crossover. In this manner, the binary DE algorithm can well adapt to the channel selection problem. The proposed algorithm is evaluated on the multispectral color imaging system on both synthetic and real data sets. It is verified that high color accuracy is achievable by only using a reduced number of channels using the proposed method. In addition, as binary DE is a global optimization algorithm in nature, it performs better than the traditional sequential channel selection algorithm.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Katrasnik, F. Pemus, and B. Likar, “Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging system,” Appl. Opt. 52, 3526–3537 (2013).
    [CrossRef]
  2. H. L. Shen, J. H. Xin, and S. J. Shao, “Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation,” Opt. Express 15, 15545–15554 (2007).
    [CrossRef]
  3. J. Brauers and T. Aach, “Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras,” IEEE Trans. Image Process. 20, 496–505 (2011).
    [CrossRef]
  4. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
    [CrossRef]
  5. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621–6632 (2000).
    [CrossRef]
  6. J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
    [CrossRef]
  7. J. Y. Hardeberg, “Acquisition and reproduction of color images: colorimetric and multispectral approaches,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, 1999).
  8. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231–1240 (2005).
    [CrossRef]
  9. F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation,” in IS&T/SID Eighth Color Imaging Conference (2000), pp. 234–241.
  10. N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the present of noise,” Opt. Eng. 45, 013201 (2006).
    [CrossRef]
  11. M. A. Lopez-Alvarez, J. Hernandez-Andres, E. M. Valero, and J. Romero, “Selecting algorithms, sensors, and linear bases for optimum spectral recovery of skylight,” J. Opt. Soc. Am. A 24, 942–956 (2007).
    [CrossRef]
  12. N. C. Hu and C. C. Wu, “Optimal selection of commercial sensors for linear model representation of daylight spectra,” Appl. Opt. 47, 3114–3123 (2008).
    [CrossRef]
  13. V. Cheung and S. Westland, “Methods for optimal color selection,” J. Imaging Sci. Technol. 50, 481–488 (2006).
    [CrossRef]
  14. H. L. Shen, H. G. Zhang, J. H. Xin, and S. J. Shao, “Optimal selection of representative colors for spectral reflectance reconstruction in a multispectal imaging system,” Appl. Opt. 47, 2494–2502 (2008).
    [CrossRef]
  15. A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
    [CrossRef]
  16. K. V. Price and R. M. Storn, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
    [CrossRef]
  17. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, 1st ed., Natural Computing Series (Springer, 2005).
  18. R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.
  19. M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
    [CrossRef]
  20. H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
    [CrossRef]
  21. G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential evolution,” in IEEE Congress on Evolution Computation (IEEE, 2006), pp. 1873–1879.
  22. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]

2013

M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
[CrossRef]

H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
[CrossRef]

J. Katrasnik, F. Pemus, and B. Likar, “Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging system,” Appl. Opt. 52, 3526–3537 (2013).
[CrossRef]

2011

J. Brauers and T. Aach, “Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras,” IEEE Trans. Image Process. 20, 496–505 (2011).
[CrossRef]

2008

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

H. L. Shen, H. G. Zhang, J. H. Xin, and S. J. Shao, “Optimal selection of representative colors for spectral reflectance reconstruction in a multispectal imaging system,” Appl. Opt. 47, 2494–2502 (2008).
[CrossRef]

N. C. Hu and C. C. Wu, “Optimal selection of commercial sensors for linear model representation of daylight spectra,” Appl. Opt. 47, 3114–3123 (2008).
[CrossRef]

2007

2006

V. Cheung and S. Westland, “Methods for optimal color selection,” J. Imaging Sci. Technol. 50, 481–488 (2006).
[CrossRef]

N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the present of noise,” Opt. Eng. 45, 013201 (2006).
[CrossRef]

2005

2001

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

2000

1997

K. V. Price and R. M. Storn, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

Aach, T.

J. Brauers and T. Aach, “Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras,” IEEE Trans. Image Process. 20, 496–505 (2011).
[CrossRef]

Alsam, A.

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

Berns, R. S.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation,” in IS&T/SID Eighth Color Imaging Conference (2000), pp. 234–241.

Brainard, D. H.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Brauers, J.

J. Brauers and T. Aach, “Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras,” IEEE Trans. Image Process. 20, 496–505 (2011).
[CrossRef]

Cheung, V.

Connah, D.

Cui, G.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Du, X.

H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
[CrossRef]

Engelbrecht, A. P.

G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential evolution,” in IEEE Congress on Evolution Computation (IEEE, 2006), pp. 1873–1879.

Farrell, J. E.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Finlayson, G.

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

Franken, N.

G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential evolution,” in IEEE Congress on Evolution Computation (IEEE, 2006), pp. 1873–1879.

Gerhardt, J.

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

Guimaraes, F. G.

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.

Haneishi, H.

Hardeberg, J.

Hardeberg, J. Y.

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

J. Y. Hardeberg, “Acquisition and reproduction of color images: colorimetric and multispectral approaches,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, 1999).

Hasegawa, T.

Hernandez-Andres, J.

Hosoi, A.

Hu, N. C.

Imai, F. H.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation,” in IS&T/SID Eighth Color Imaging Conference (2000), pp. 234–241.

Jin, C. C.

H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
[CrossRef]

Kashan, A.

M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
[CrossRef]

Kashan, M. H.

M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
[CrossRef]

Katrasnik, J.

Lampinen, J. A.

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, 1st ed., Natural Computing Series (Springer, 2005).

Li, C.

Likar, B.

Lopez-Alvarez, M. A.

Luo, M. R.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Miyake, Y.

Nahavandi, N.

M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
[CrossRef]

Neto, O. M.

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.

Pampara, G.

G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential evolution,” in IEEE Congress on Evolution Computation (IEEE, 2006), pp. 1873–1879.

Pemus, F.

Prado, R. S.

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.

Price, K. V.

K. V. Price and R. M. Storn, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, 1st ed., Natural Computing Series (Springer, 2005).

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Romero, J.

Rosen, M. R.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation,” in IS&T/SID Eighth Color Imaging Conference (2000), pp. 234–241.

Shao, S. J.

Shen, H. L.

Shimano, N.

N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the present of noise,” Opt. Eng. 45, 013201 (2006).
[CrossRef]

Silva, R. C. P.

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.

Storn, R. M.

K. V. Price and R. M. Storn, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, 1st ed., Natural Computing Series (Springer, 2005).

Tietz, J. D.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Tsumura, N.

Valero, E. M.

Vora, P. L.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Westland, S.

Wu, C. C.

Xin, J. H.

Yokoyama, Y.

Zhang, H. G.

Zhang, Z. H.

H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
[CrossRef]

Appl. Opt.

Color Res. Appl.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

Comput. Optim. Appl.

M. H. Kashan, A. Kashan, and N. Nahavandi, “A novel differential evolution algorithm for binary optimization,” Comput. Optim. Appl. 55, 481–513 (2013).
[CrossRef]

IEEE Trans. Image Process.

J. Brauers and T. Aach, “Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras,” IEEE Trans. Image Process. 20, 496–505 (2011).
[CrossRef]

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

J. Electron. Imaging

H. L. Shen, Z. H. Zhang, C. C. Jin, X. Du, S. J. Shao, and J. H. Xin, “Adaptive characterization method for desktop color printers,” J. Electron. Imaging 22, 023012 (2013).
[CrossRef]

J. Global Optim.

K. V. Price and R. M. Storn, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

J. Imaging Sci. Technol.

V. Cheung and S. Westland, “Methods for optimal color selection,” J. Imaging Sci. Technol. 50, 481–488 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the present of noise,” Opt. Eng. 45, 013201 (2006).
[CrossRef]

Opt. Express

Other

J. Y. Hardeberg, “Acquisition and reproduction of color images: colorimetric and multispectral approaches,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, 1999).

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, 1st ed., Natural Computing Series (Springer, 2005).

R. S. Prado, R. C. P. Silva, F. G. Guimaraes, and O. M. Neto, “Using differential evolution for combinatorial optimization: a general approach,” in IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2000), pp. 11–18.

G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary differential evolution,” in IEEE Congress on Evolution Computation (IEEE, 2006), pp. 1873–1879.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation,” in IS&T/SID Eighth Color Imaging Conference (2000), pp. 234–241.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics