Abstract

Subsurface fluorescence molecular tomography (FMT) is an emerging technique determining fluorescence distribution by tomographic means in reflectance geometry. However, due to the highly diffusive nature of the photon propagation in biological tissues and the influence of nearer source–detector separations, stand-alone subsurface FMT could not accurately reflect the fluorophore distributions. To overcome this drawback, we propose a method to improve the performance of fluorescence imaging by coupling x-ray computed tomography (XCT) and subsurface FMT modalities. A Laplacian-type regularization matrix generated with tissue prior information obtained from XCT images is used to guide the reconstruction of fluorophore distribution. Reconstruction results of both simulation and phantom studies showed that significant improvements in localization and demarcation of fluorescent targets can be obtained with the proposed method compared to the reconstruction method without structural prior information.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kepshire, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for subsurface imaging with protoporphyrin IX,” Opt. Express 16, 8581–8593 (2008).
    [CrossRef]
  2. S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
    [CrossRef]
  3. F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).
  4. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
    [CrossRef]
  5. V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
    [CrossRef]
  6. M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004).
    [CrossRef]
  7. L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
    [CrossRef]
  8. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
    [CrossRef]
  9. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  10. E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1–2), 159–179 (2009).
    [CrossRef]
  11. X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
    [CrossRef]
  12. R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
    [CrossRef]
  13. A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
    [CrossRef]
  14. B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
    [CrossRef]
  15. G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
    [CrossRef]
  16. S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
    [CrossRef]
  17. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
    [CrossRef]
  18. E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
    [CrossRef]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  20. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
    [CrossRef]
  21. D. F. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
    [CrossRef]
  22. X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
    [CrossRef]
  23. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
    [CrossRef]
  24. C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
    [CrossRef]
  25. J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
    [CrossRef]
  26. F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
    [CrossRef]
  27. D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
    [CrossRef]
  28. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
    [CrossRef]
  29. Y. T. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48, 1328–1336 (2009).
    [CrossRef]

2012 (5)

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

2011 (3)

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

2010 (2)

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (4)

2006 (2)

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

2005 (1)

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

2004 (1)

M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004).
[CrossRef]

2002 (3)

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
[CrossRef]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1982 (1)

C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Abou-Elkacem, L.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

Ale, A.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

Angelis, M. H.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Aydin, E. D.

E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
[CrossRef]

Bai, J.

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

D. F. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
[CrossRef]

Baritaux, J.-C.

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

Björn, S.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

Boas, D.

M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Brooksby, B.

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Bucher, M.

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

Burgess, S. A.

E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1–2), 159–179 (2009).
[CrossRef]

Cao, X.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

Carpenter, C. M.

Chance, B.

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

Christian, C.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

Dai, Z. Q.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

Davis, S.

Davis, S. C.

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef]

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

De Oliveira, C. R. E.

E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
[CrossRef]

Dehghani, H.

D. Kepshire, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for subsurface imaging with protoporphyrin IX,” Opt. Express 16, 8581–8593 (2008).
[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Doleschel, D.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

Englmeier, K. H.

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

Ermolayev, V.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Franceschini, M.

M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004).
[CrossRef]

Freyer, M.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

Gibbs, S.

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

Goddard, A. J. H.

E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
[CrossRef]

Gulsen, G.

Guo, X. L.

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Hassler, K.

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

He, W.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

Herzog, E.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1–2), 159–179 (2009).
[CrossRef]

Hoffman, R. M.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

Hu, G. S.

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef]

Jiang, S. D.

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Kepshire, D.

Kepshire, D. S.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef]

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

Kiessling, F.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

Klose, A. D.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Kogel, C.

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Larsen, E. W.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Lederle, W.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

Li, Y. H.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

Lin, Y. T.

Liu, F.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Liu, X.

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

D. F. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
[CrossRef]

Luo, J. W.

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

Nalcioglu, O.

Ntziachristos, V.

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Paige, C. C.

C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Paulsen, K. D.

D. Kepshire, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for subsurface imaging with protoporphyrin IX,” Opt. Express 16, 8581–8593 (2008).
[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef]

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Pogue, B. W.

D. Kepshire, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for subsurface imaging with protoporphyrin IX,” Opt. Express 16, 8581–8593 (2008).
[CrossRef]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Poplack, S. P.

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Sanyal, S.

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

Sarantopoulos, A.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

Saunders, M. A.

C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

Schulz, R.

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

Schulz, R. B.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

Soehngen, E.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

Song, J. P.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

Tian, F.

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Tung, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Unser, M.

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

Wang, D. F.

Wang, J.

Wang, X.

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Weaver, J.

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

Weissleder, R.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Yalavarthy, P. K.

Yan, H.

Yodh, A.

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

Zhang, B.

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).
[CrossRef]

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

Zhang, G. L.

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

Zientkowskac, M.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

ACM Trans. Math. Softw. (1)

C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Appl. Opt. (2)

Eur. Radiol. (1)

L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010).
[CrossRef]

IEEE Trans. Med. Imaging (2)

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010).
[CrossRef]

J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011).
[CrossRef]

Int. J. Autom. Comput. (1)

F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (4)

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011).
[CrossRef]

F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).

B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[CrossRef]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef]

J. Comput. Phys. (1)

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Laser Photonics Rev. (1)

E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1–2), 159–179 (2009).
[CrossRef]

Med. Phys. (2)

E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).
[CrossRef]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Nat. Med. (1)

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Nat. Methods (1)

A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).
[CrossRef]

Neoplasia (1)

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef]

NeuroImage (1)

M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (1)

G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012).
[CrossRef]

Proc. SPIE (2)

D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of simulation studies. (a) 3D view of the simulation configuration. A small fluorescent target is placed inside a bigger cylinder with optical parameters (μa=0.8cm1, μs=130.0cm1, anisotropy factor g=0.9, refractive index n=1.33). (b) Front view of the simulation configuration. The red-dashed line represents the height of z=1.5cm. (c) Top view of fluorescent targets (ϕ=0.2, 0.5, 0.8 cm) that are sequentially placed directly against the edge of the bigger cylinder. (d) Top view of fluorescent target that is placed at a certain depth (0.4 cm) away from the edge.

Fig. 2.
Fig. 2.

Schematic of the hybrid subsurface FMT/micro-CT imaging system.

Fig. 3.
Fig. 3.

Front view and top view of phantom configurations. A 3.0 cm diameter (ϕ1) glass cylinder containing a mixture of water, intralipid, and ink was employed as the phantom, with an absorption coefficient of μa=0.8cm1 and a scattering coefficient of μs=130.0cm1. There are three different diameters of glass tubes (case 1: ϕ2=0.8cm, case 2: ϕ2=0.5cm, case 3: ϕ2=0.2cm) sequentially placed directly against the edge of the cylinder phantom in (a) and one (case 4: ϕ3=0.2cm) placed at a certain distance (d=0.47cm) away from the edge of the cylindrical phantom in (b). The heights of the inclusions were the same both in (a) and (b) (h=0.4cm).

Fig. 4.
Fig. 4.

Reconstruction results using simulated data (with 20 db Gaussian white noise) with Tikhonov regularization (without prior information, first row) and Laplace regularization (with prior information, second row). These results, normalized by their maximum, are presented in the form of slice images at z=1.5cm plane (indicated by the red-dashed line in Fig. 1). The small white circles on the cross-sectional images denote the actual position of the fluorescent target.

Fig. 5.
Fig. 5.

Reconstruction results of phantom experiments. The first two columns show the reconstruction results obtained with Tikhonov regularization (without prior information) while the next two columns show the reconstruction results obtained with Laplace regularization (with prior structural information). In each subfigure, the result on the left is the transverse slice of FMT reconstruction overlaid on the XCT slices, and that on the right is the 3D image. The red circles on the 3D image indicate the position of investigated slice image on the left, and the small white circles on the left slice image denote the actual position of the tube obtained from XCT.

Tables (5)

Tables Icon

Table 1. Geometrical Parameters of Cylindrical Fluorescent Targets

Tables Icon

Table 2. Centroids of Reconstructed Result in Simulation Studies

Tables Icon

Table 3. CNRs of Simulation Studies

Tables Icon

Table 4. Centroids of Reconstructed Result in Phantom Experiment

Tables Icon

Table 5. CNRs of Phantom Experiment

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{·13μa1(r)·φ1(r)+μa(r)φ1(r)23μa(r)φ2(r)=S(r)23μa(r)φ1(r)·17μa3(r)·φ2(r)+(49μa(r)+59μa2(r))φ2(r)=23S(r),
{(12+A1)φ1(r)+1+B13μa1(r)(n⃗(r).φ1(r))=(18+C1)φ2(r)+D1μa3(r)(n⃗(r).φ2(r))(724+A2)φ2(r)+1+B27μa3(r)(n⃗(r).φ2(r))=(18+C2)φ1(r)+D2μa1(r)(n⃗(r).φ1(r)).
Φ({rs},rd)=ΘG(r,{rs})x(r)G(r,rd)d3r,
G(r,{rs})=G(r,rs)d2rs,
Φ=Wx,
E(x)=ΦWx2+λLx2.
Lij={1,ifi=j1/Tn,ifiandjare in the same regionn0,ifiandjare not in the same region,
CNR=μROIμBCK(ωROIσROI2+ωBCKσBCK2)1/2,

Metrics