Abstract

Minimally invasive surgery procedures benefit from a reduced size of endoscopic devices. A prospective path to implement miniaturized endoscopy is single optical-fiber-based spectrally encoded imaging. While simultaneous spectrally encoded inertial-scan-free imaging and laser microsurgery have been successfully demonstrated in a large table setup, a highly miniaturized optical design would promote the development of multipurpose endoscope heads. This paper presents a highly scalable, entirely transmissive axial design for a spectral 2D spatial disperser. The proposed design employs a grating prism and a virtual imaged phased array (VIPA). Based on semi-analytical device modeling, we performed a systematic parameter analysis to assess the spectral disperser’s manufacturability and to obtain an optimum application-specific design. We found that, in particular, a low grating period combined with a high optical input bandwidth and low VIPA tilt showed favorable results in terms of a high spatial resolution, a small device diameter, and a large field of view. Our calculations reveal that a reasonable imaging performance can be achieved with system diameters of below 5 mm, which renders the proposed 2D spatial disperser design highly suitable for use in future endoscope heads that combine mechanical-scan-free imaging and laser microsurgery.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Soper, Mastery of Endoscopic and Laparoscopic Surgery (Lippincott Williams & Wilkins, 2008).
  2. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
    [CrossRef]
  3. B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
    [CrossRef]
  4. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
    [CrossRef]
  5. R. Liang, Optical Design for Biomedical Imaging (SPIE, 2010).
  6. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
    [CrossRef]
  7. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [CrossRef]
  8. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
    [CrossRef]
  9. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
    [CrossRef]
  10. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366–368 (1996).
    [CrossRef]
  11. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [CrossRef]
  12. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band,” Opt. Express 12, 2895–2902 (2004).
    [CrossRef]
  13. P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
    [CrossRef]
  14. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [CrossRef]
  15. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [CrossRef]
  16. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
    [CrossRef]
  17. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
    [CrossRef]
  18. C. Pitris, B. Bouma, M. Shiskov, and G. Tearney, “A grism-based probe for spectrally encoded confocal microscopy,” Opt. Express 11, 120–124 (2003).
    [CrossRef]
  19. S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
    [CrossRef]
  20. M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  21. R. Zemax, Version 13 (Redmond, Washington, 2013).
  22. MATLAB., Version 7.14.0 (R2012a) (The MathWorks, 2012).
  23. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
    [CrossRef]
  24. R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2011).

2013

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
[CrossRef]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

2012

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

2010

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

2009

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

2008

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
[CrossRef]

2007

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

2006

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

2004

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band,” Opt. Express 12, 2895–2902 (2004).
[CrossRef]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

2003

2001

1998

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

1996

1993

Adam, J.

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Ayazi, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Aziz, D.

Barretto, R. P. J.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Behnke, C.

Ben-Yakar, A.

Block, H.

Born, M.

M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bouma, B.

Bouma, B. E.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Burn, L. D.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Capewell, D.

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Chen, P.

Cocker, E. D.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Di Carlo, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Durr, N. J.

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Fedder, G. K.

Flusberg, B. A.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Gerken, M.

Gmitro, F.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[CrossRef]

Gossett, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Hoy, C. L.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[CrossRef]

Jung, J. C.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Ko, T. H.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Krantz, M.

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Liang, R.

R. Liang, Optical Design for Biomedical Imaging (SPIE, 2010).

Lin, C.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Mahjoubfar, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Metz, P.

Motz, J. T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Mukamel, E. A.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Nimeerjahn, A.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Pan, Y.

Pitris, C.

Piyawattanametha, W.

Ra, H.

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Schnitzer, M. J.

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Shirasaki, M.

Shiskov, M.

Solgaard, O.

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Soper, N. J.

N. J. Soper, Mastery of Endoscopic and Laparoscopic Surgery (Lippincott Williams & Wilkins, 2008).

Szeliski, R.

R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2011).

Tearney, G.

Tearney, G. J.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Tsia, K. K.

Wang, C.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Weiner, A.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

Weiner, A. M.

White, W. M.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Xiao, S.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band,” Opt. Express 12, 2895–2902 (2004).
[CrossRef]

Xie, H.

Yelin, D.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

Zemax, R.

R. Zemax, Version 13 (Redmond, Washington, 2013).

IEEE J. Quantum Electron.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[CrossRef]

Nat. Methods

B. A. Flusberg, A. Nimeerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burn, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5, 935–938 (2008).
[CrossRef]

Nat. Photonics

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

Nature

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765 (2006).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

Opt. Commun.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Sci. Rep.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

SIAM J. Optim.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Other

R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2011).

M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

R. Zemax, Version 13 (Redmond, Washington, 2013).

MATLAB., Version 7.14.0 (R2012a) (The MathWorks, 2012).

N. J. Soper, Mastery of Endoscopic and Laparoscopic Surgery (Lippincott Williams & Wilkins, 2008).

R. Liang, Optical Design for Biomedical Imaging (SPIE, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SECOMM system sketch (OSA, optical spectrum analyzer; EDFA, erbium-doped fiber amplifier) modified from [9]. The 2D spatial dispersion is implemented via a virtually imaged phased array (VIPA), in conjunction with a perpendicularly arranged reflective diffraction grating and focusing optics.

Fig. 2.
Fig. 2.

Axial spectral shower design, using a perpendicularly aligned VIPA and prism-embedded grating (GRISM). This produces a 2D angular dispersion, which is mapped into position space by an imaging lens. The field of view (FOV) is determined by the dispersed 2D angular spread and the imaging lens’ focal length.

Fig. 3.
Fig. 3.

Parameter analysis flow-chart. A symmetric one-to-one FOV is numerically optimized for each parameter set. Fixed parameters are the GRISM glass, the VIPA refractive index, and the center wavelength.

Fig. 4.
Fig. 4.

Examples of two spectral showers, demonstrating the trade-off between FOV, pixel resolution, and spatial warp. Horizontal dispersion is produced by the VIPA, and vertical dispersion is produced by the GRISM, forming a line-by-line spectral shower. (a) Angular wavelength distribution produced by a 40 nm bandwidth, 8° VIPA tilt, and a 600lines/mm grating. (b) Angular wavelength distribution produced by a 40 nm bandwidth, 4° VIPA tilt, and a 1200lines/mm grating.

Fig. 5.
Fig. 5.

(a) FOV increases with increasing laser bandwidth and increasing grating period. (b) Achieved pixel resolution at a given VIPA tilt for different GRISM grating periods. An optimal pixel resolution is achieved by employing a low period grating in combination with a small VIPA tilt.

Fig. 6.
Fig. 6.

Calculated spatial warp and minimum optically active diameter conditioned by the diffraction limit as a function of source bandwidth and VIPA tilt for three different GRISM grating periods. A higher grating period increases the warp but allows for a reduced lens diameter due to the lower pixel resolution. Hatched areas indicate unfeasible parameter regions.

Fig. 7.
Fig. 7.

Parameter analysis for an air-spaced VIPA. Compared to an n=1.51 VIPA the minimum diameter is reduced, but the pixel resolution is reduced as well. The VIPA material has no influence on the spatial warp. (a) Pixel resolution as a function of VIPA tilt and grating period. (b) Spatial warp and (c) minimum optically active diameter for a 600lines/mm grating.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θx2cosβ2n+θxtanβcosαncosβ=mλ2t.
m1=2tncosβ/λ,andm2=m1+1,
spatial warp:=θxλ|leftθxλ|right1.

Metrics