Abstract

We present a novel thin and flat solar concentrator design, inspired by the structure and optical functionality of the ommatidium in the compound eye of insects. By combining a microlens with a curved light guide, rather than the conventionally employed dielectric or metallic reflectors, we could simultaneously achieve low-loss light redirection and wide acceptance angle without compromising the overall thinness or flatness of the concentrator. Through design optimizations, we could achieve optical concentration factors up to 39 and acceptance angle up to ±15° while maintaining the thickness of the concentrator under 1.1 cm for a length of 20 cm. We also showed that the optical concentration factor can be further increased to 81 through tapering of the geometry.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).
  2. J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).
  3. R. M. Swanson, “The promise of concentrators,” Prog. Photovoltaics 8, 93–111 (2000).
    [CrossRef]
  4. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005).
    [CrossRef]
  5. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A 14, 235–254 (1977).
  6. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [CrossRef]
  7. J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
    [CrossRef]
  8. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
    [CrossRef]
  9. B. L. Unger, “Dimpled planar light guide solar concentrators,” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2010).
  10. University of Oregon, Solar Radiation Monitoring Laboratory, Sun Path Chart Program, [Online] Available: http://solardat.uoregon.edu/SunChartProgram.html .
  11. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
    [CrossRef]
  12. J. Hallas, K. Baker, J. Karp, E. Tremblay, and J. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51, 6117–6124 (2012).
    [CrossRef]
  13. M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol. 42, 147–177 (1997).
    [CrossRef]
  14. D. G. Stavenga and J. H. van Hateren, “Focusing by a high-power, low-Fresnel-number lens: the fly facet lens,” J. Opt. Soc. Am. A 8, 14–19 (1991).
    [CrossRef]
  15. J. H. van Hateren, “Photoreceptors optics, theory and practice,” in Facets of Vision, D. G. Stavenga and R. C. Hardie, eds. (Springer-Verlag, 1989), pp. 74–89.
  16. R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
    [CrossRef]
  17. J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30, 5–7 (2005).
    [CrossRef]
  18. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef]
  19. Schott, Optical glass data sheet, [Online] Available: http://edit.schott.com/advanced_optics/us/abbe_datasheets/schott-datasheet-all-us.pdf .
  20. K. Gawlik, C. Kutscher, and F. Burkholder, “Optical efficiency measurements of the SkyTrough solar collector,” National Renewable Energy Laboratory (2010).
  21. J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett 36, 3789–3791 (2011).
    [CrossRef]
  22. J. Lee and J. Kim, “Fabrication of strongly anchored, high aspect ratio elastomeric microwires for mechanical and optical applications,” J. Micromech. Microeng. 21, 085016 (2011).
    [CrossRef]
  23. K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
    [CrossRef]

2012 (1)

2011 (3)

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett 36, 3789–3791 (2011).
[CrossRef]

J. Lee and J. Kim, “Fabrication of strongly anchored, high aspect ratio elastomeric microwires for mechanical and optical applications,” J. Micromech. Microeng. 21, 085016 (2011).
[CrossRef]

2010 (2)

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
[CrossRef]

2009 (1)

J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
[CrossRef]

2008 (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

2006 (1)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

2005 (2)

2000 (1)

R. M. Swanson, “The promise of concentrators,” Prog. Photovoltaics 8, 93–111 (2000).
[CrossRef]

1997 (1)

M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol. 42, 147–177 (1997).
[CrossRef]

1991 (1)

1989 (1)

R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A 14, 235–254 (1977).

Baker, K.

Benitez, P.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Burkholder, F.

K. Gawlik, C. Kutscher, and F. Burkholder, “Optical efficiency measurements of the SkyTrough solar collector,” National Renewable Energy Laboratory (2010).

Chaves, J.

J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).

Ford, J.

Ford, J. E.

Gawlik, K.

K. Gawlik, C. Kutscher, and F. Burkholder, “Optical efficiency measurements of the SkyTrough solar collector,” National Renewable Energy Laboratory (2010).

Gordon, J. M.

Hallas, J.

Hallas, J. M.

Hardie, R. C.

R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
[CrossRef]

Jeong, K.-H.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30, 5–7 (2005).
[CrossRef]

Jung, H.

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

Karp, J.

Karp, J. H.

Kim, J.

J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett 36, 3789–3791 (2011).
[CrossRef]

J. Lee and J. Kim, “Fabrication of strongly anchored, high aspect ratio elastomeric microwires for mechanical and optical applications,” J. Micromech. Microeng. 21, 085016 (2011).
[CrossRef]

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30, 5–7 (2005).
[CrossRef]

Kostuk, R. K.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

Kutscher, C.

K. Gawlik, C. Kutscher, and F. Burkholder, “Optical efficiency measurements of the SkyTrough solar collector,” National Renewable Energy Laboratory (2010).

Land, M. F.

M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol. 42, 147–177 (1997).
[CrossRef]

Lee, D.-S.

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

Lee, H. C.

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

Lee, J.

J. Lee and J. Kim, “Fabrication of strongly anchored, high aspect ratio elastomeric microwires for mechanical and optical applications,” J. Micromech. Microeng. 21, 085016 (2011).
[CrossRef]

J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett 36, 3789–3791 (2011).
[CrossRef]

Lee, K.

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

Lee, L. P.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30, 5–7 (2005).
[CrossRef]

Minano, J. C.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A 14, 235–254 (1977).

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

Rudolph, A.

R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
[CrossRef]

Stavenga, D. G.

Swanson, R. M.

R. M. Swanson, “The promise of concentrators,” Prog. Photovoltaics 8, 93–111 (2000).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A 14, 235–254 (1977).

Tremblay, E.

Tremblay, E. J.

Unger, B. L.

B. L. Unger, “Dimpled planar light guide solar concentrators,” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2010).

van Hateren, J. H.

D. G. Stavenga and J. H. van Hateren, “Focusing by a high-power, low-Fresnel-number lens: the fly facet lens,” J. Opt. Soc. Am. A 8, 14–19 (1991).
[CrossRef]

J. H. van Hateren, “Photoreceptors optics, theory and practice,” in Facets of Vision, D. G. Stavenga and R. C. Hardie, eds. (Springer-Verlag, 1989), pp. 74–89.

Vogt, K.

R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
[CrossRef]

Welford, W. T.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Winston, R.

R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005).
[CrossRef]

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Adv. Mater. (1)

K. Lee, H. C. Lee, D.-S. Lee, and H. Jung, “Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle,” Adv. Mater. 22, 483–486 (2010).
[CrossRef]

Annu. Rev. Entomol. (1)

M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol. 42, 147–177 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A 14, 235–254 (1977).

J. Insect Physiol. (1)

R. C. Hardie, K. Vogt, and A. Rudolph, “The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis),” J. Insect Physiol. 35, 423–431 (1989).
[CrossRef]

J. Micromech. Microeng. (1)

J. Lee and J. Kim, “Fabrication of strongly anchored, high aspect ratio elastomeric microwires for mechanical and optical applications,” J. Micromech. Microeng. 21, 085016 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett (1)

J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett 36, 3789–3791 (2011).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
[CrossRef]

Prog. Photovoltaics (1)

R. M. Swanson, “The promise of concentrators,” Prog. Photovoltaics 8, 93–111 (2000).
[CrossRef]

Science (1)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Other (7)

Schott, Optical glass data sheet, [Online] Available: http://edit.schott.com/advanced_optics/us/abbe_datasheets/schott-datasheet-all-us.pdf .

K. Gawlik, C. Kutscher, and F. Burkholder, “Optical efficiency measurements of the SkyTrough solar collector,” National Renewable Energy Laboratory (2010).

B. L. Unger, “Dimpled planar light guide solar concentrators,” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2010).

University of Oregon, Solar Radiation Monitoring Laboratory, Sun Path Chart Program, [Online] Available: http://solardat.uoregon.edu/SunChartProgram.html .

J. H. van Hateren, “Photoreceptors optics, theory and practice,” in Facets of Vision, D. G. Stavenga and R. C. Hardie, eds. (Springer-Verlag, 1989), pp. 74–89.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) The operational principle of conventional TFSCs. (b) The microlens–LRE pairing scheme adopted in conventional TFSCs. This can reduce the fraction of the bottom surface area taken up by the LREs, but narrows the acceptance angle.

Fig. 2.
Fig. 2.

(a) The proposed LRE in a cross-sectional view. (b) Diagrams of a compound eye with the ommatidium, its vision unit (compound eye diagram courtesy of Biodidac Project).

Fig. 3.
Fig. 3.

(a) A schematic diagram of the proposed LRE, realized by extruding the cross-sectional geometry in Fig. 2(a) along the y axis. Both (b) and (c) are ray-tracing results, superimposed to show the tolerance of the proposed LRE to the oblique incidence in the yz plane and the xz plane, respectively. (d) A schematic diagram showing a TFSC comprising multiple unit-cells.

Fig. 4.
Fig. 4.

Spectral weight of the solar radiation corresponding to blackbody temperature of 5800 K and transmittance of 2.5 cm thick polymer.

Fig. 5.
Fig. 5.

Mechanisms of light leakage near the junction of two light guides. Magnified views at A and B show the decrease in the incidence angle and the consequential light leakage at the junction. In some cases, the light will leak at the subsequent reflection, as shown in C.

Fig. 6.
Fig. 6.

(a) LRE unit-cell with F/2.55 lens. (b) Funnel design for the F/2.55 unit-cell. Graphs (c) and (d) are the computed η of the F/2.55 unit-cell as a function of the incidence angle in xz and yz planes, respectively. (e) Effect of incidence angle to the lens in yz plane on the incident angle to the side of the bottom plate in xz plane.

Fig. 7.
Fig. 7.

(a) The effect of the F-number on η for different CGEO. (b) The effect of the light guide’s curvature on the η values of a N=10 system. (c) The effect of the thickness of the light guide on the η values of a N=10 system. In both (b) and (c), each LRE unit-cell employed a F/2.55 lens and a light guide with 2.95 mm curvature and 0.1 mm thickness.

Fig. 8.
Fig. 8.

(a) A multi-cell TFSC design comprising 100 unit-cells. Both (b) and (c) show the simulated η plotted as a function of the incidence angle in the (b) xz and (c) yz planes of Fig. 3(a). (d) The simulated η and CTOT plotted as a function of the number of the unit-cells N for the case of normal incidence.

Fig. 9.
Fig. 9.

Total area under the CTOT—FWHM angle plot maximizes when the ratio of the widths of the plate is at around 2.37 for the 100 unit-cell system.

Fig. 10.
Fig. 10.

(a) A 100-cell tapered TFSC. Both (b) and (c) show the simulated η plotted as a function of the incidence angle in the (b) xz and (c) yz planes of Fig. 3(a). (d) η and CTOT as functions of the number of unit-cells.

Tables (2)

Tables Icon

Table 1. Design Parameters for LRE with Different F-Numbers

Tables Icon

Table 2. Summary of Present TFSC Light Collection Performance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

CGEOArea of light collection regionArea of the destination region=CA×the number of unit cellst,
ηPower obtained at the destination regionPower entering the collection region,
CTOT=CGEO×ηIntensity at the destination regionIntensity at the collection region.
CGEOmax=nsinθ.
CGEO,TAPERED=AInAOut=l×(w1+w2)/2w2×t,

Metrics