Abstract

A new technique for producing a white light differential interference contrast (DIC) image using a lateral shearing, rotation phase shifting Sagnac interferometer (SI) is proposed. The SI, placed in the image space after the tube lens of a microscope system with spatially coherent white light Kohler illumination, splits the image forming beam into coherent components with small lateral shear. Phase shifts, between the interfering components, which can be considered as biased phase difference (BPD), are introduced by applying small angular rotation of the SI in its own plane. This variable BPD between the interfering white light components produces a uniform intensity colored background. The object related phase shift, due to the height difference between two close points on the object surface with separation on the order of least resolvable separation of the microscope objective, in addition to the BPD would produce a change in intensity/hue/color against a uniform background due to the BPD. Thus a DIC image is formed and the variable BPD provides an excellent means of improving the contrast of the image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Rad. 16, 9s–13s (1955).
  2. D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. 1. Theory,” J. Opt. Soc. Am. 69, 357–365 (1979).
    [CrossRef]
  3. J. S. Hartman, R. S. Gordon, and D. L. Lessor, “Quantitative surface topography determination by Nomarski reflection microscopy. 2. Microscope modification, calibration, and planar sample experiments,” Appl. Opt. 19, 2998–3009 (1980).
    [CrossRef]
  4. J. S. Hartman, R. S. Gordon, and D. L. Lessor, “Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques,” Appl. Opt. 20, 2665–2669 (1981).
    [CrossRef]
  5. S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng. 42, 2202–2213 (2003).
    [CrossRef]
  6. M. Adachi and K. Yasaka, “Roughness measurement using a shearing interference microscope,” Appl. Opt. 25, 764–768 (1986).
    [CrossRef]
  7. K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
    [CrossRef]
  8. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and H. S. Feld, “Quantitative DIC microscopy using an off axis self interference approach,” Opt. Lett. 35, 2370–2372 (2010).
    [CrossRef]
  9. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

2010 (1)

2003 (1)

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng. 42, 2202–2213 (2003).
[CrossRef]

1988 (1)

K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
[CrossRef]

1986 (1)

1981 (1)

1980 (1)

1979 (1)

1955 (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Rad. 16, 9s–13s (1955).

Adachi, M.

Barnes, T. H.

K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
[CrossRef]

Bhaduri, B.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Chatterjee, S.

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng. 42, 2202–2213 (2003).
[CrossRef]

Choi, W.

Dasari, R. R.

Dorn, A.

Feld, H. S.

Fu, D.

Gordon, R. L.

Gordon, R. S.

Hartman, J. S.

Lessor, D. L.

Matsuda, K.

K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
[CrossRef]

Mir, M.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Namiki, M.

K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
[CrossRef]

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Rad. 16, 9s–13s (1955).

Oh, S.

Popescu, G.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Yamauchi, T.

Yaqoob, Z.

Yasaka, K.

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

J. Phys. Rad. (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Rad. 16, 9s–13s (1955).

Opt. Eng. (1)

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng. 42, 2202–2213 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

K. Matsuda, M. Namiki, and T. H. Barnes, “A differential interference contrast system incorporating a Murty interferometer and holographic correction,” Opt. Lasers Eng. 9, 35–46 (1988).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Chap. 3, pp. 133–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical schematic of the SI-based white light DIC-microscope system.

Fig. 2.
Fig. 2.

Ray paths in the SI.

Fig. 3.
Fig. 3.

Longitudinal shift between the virtual images due to an angular rotation α of the SI shown by ABCD.

Fig. 4.
Fig. 4.

Spectral intensity distribution of the halogen lamp.

Fig. 5.
Fig. 5.

(a)–(c) DIC images obtained for different BPD.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕBλ=[π±2πλ(Ssinα)],
ϕTλ=[π±2πλ(Ssinα)+2πλ(2δ)].

Metrics