Abstract

In this work, the crystalline lens in the Gullstrand–Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye’s limit of resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res. 38, 209–229 (1998).
    [CrossRef]
  2. M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
    [CrossRef]
  3. R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
    [CrossRef]
  4. S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
    [CrossRef]
  5. S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
    [CrossRef]
  6. J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
    [CrossRef]
  7. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
    [CrossRef]
  8. D. Yu and H. Tan, Engineering Optics (China Machine, 2007).
  9. P. Mouroulis, Visual Instrumentation: Optical Design and Engineering Principles (McGraw-Hill, 1999).
  10. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  11. J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).
  12. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
    [CrossRef]
  13. D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).
  14. F. P. Miller, A. F. Vandome, and J. McBrewster, Human Eye (VDM, 2009).

2011 (1)

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

2009 (1)

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

2007 (4)

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

2004 (1)

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

2003 (2)

S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
[CrossRef]

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1998 (1)

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res. 38, 209–229 (1998).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res. 38, 209–229 (1998).
[CrossRef]

Chen, J.

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

Chen, S.

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

Cho, S. H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

de Brabander, J.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Dolders, M. G. T.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Findl, O.

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

Glasser, A.

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res. 38, 209–229 (1998).
[CrossRef]

Hendrikse, F.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Hu, A.

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

Kriechbaum, K.

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

Leydolt-Koeppl, C.

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

Lo, Y.-H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

McBrewster, J.

F. P. Miller, A. F. Vandome, and J. McBrewster, Human Eye (VDM, 2009).

McLeod, S. D.

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
[CrossRef]

Menapace, R.

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

Miller, F. P.

F. P. Miller, A. F. Vandome, and J. McBrewster, Human Eye (VDM, 2009).

Mouroulis, P.

P. Mouroulis, Visual Instrumentation: Optical Design and Engineering Principles (McGraw-Hill, 1999).

Nijkamp, M. D.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Nuijts, R. M. M. A.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Peng, R.

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Portney, V.

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
[CrossRef]

Qiao, W.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

Sheng, J.

J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).

Tan, H.

D. Yu and H. Tan, Engineering Optics (China Machine, 2007).

Ting, A.

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
[CrossRef]

Tsai, F. S.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

van den Borne, B.

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Vandome, A. F.

F. P. Miller, A. F. Vandome, and J. McBrewster, Human Eye (VDM, 2009).

Vargas, L. G.

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

Wang, D.

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

Wold, J. E.

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

Yan, H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

Yu, D.

D. Yu and H. Tan, Engineering Optics (China Machine, 2007).

Zhu, C.

Zhuang, S.

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

Acta Photon. Sin. (1)

D. Wang, R. Peng, J. Chen, and S. Zhuang, “Variable-focus hysteresis of double-liquid variable-focus lens,” Acta Photon. Sin. 31, 1–5 (2011).

Br. J. Ophthalmol. (1)

S. D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2003).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

R. Menapace, O. Findl, K. Kriechbaum, and C. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 473–489 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y.-H. Lo, “Fluidic intraocular lens with a large accommodating range,” IEEE Photon. Technol. Lett. 21, 304–306 (2009).
[CrossRef]

J. Cataract Refract. Surg. (2)

J. E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract Refract. Surg. 29, 1878–1888 (2003).
[CrossRef]

S. D. McLeod, L. G. Vargas, V. Portney, and A. Ting, “Synchrony dual-optic accommodating intraocular lens,” J. Cataract Refract. Surg. 33, 37–46 (2007).
[CrossRef]

Ophthalmology (1)

M. D. Nijkamp, M. G. T. Dolders, J. de Brabander, B. van den Borne, F. Hendrikse, and R. M. M. A. Nuijts, “Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial,” Ophthalmology 111, 1832–1839.e2 (2004).
[CrossRef]

Opt. Express (1)

Opt. Instrum. (1)

J. Sheng, R. Peng, and J. Chen, “Analysis on properties of the double-liquid zoom lens based on electrowetting,” Opt. Instrum. 29, 23–26 (2007).

Vis. Res. (1)

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res. 38, 209–229 (1998).
[CrossRef]

Other (3)

D. Yu and H. Tan, Engineering Optics (China Machine, 2007).

P. Mouroulis, Visual Instrumentation: Optical Design and Engineering Principles (McGraw-Hill, 1999).

F. P. Miller, A. F. Vandome, and J. McBrewster, Human Eye (VDM, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the Gullstrand–Le Grand human eye model.

Fig. 2.
Fig. 2.

Schematic diagram of double-liquid variable-focus lens. U is the applied voltage; the opposite electrodes are on the copper pipe and the copper substrate separately.

Fig. 3.
Fig. 3.

2D schematic diagram of the primary psuedoaphakic eye model for Group 3. r is the interface.

Fig. 4.
Fig. 4.

Spot diagram of the primary model on the image plane.

Fig. 5.
Fig. 5.

2D schematic diagram of the pseudoaphakic eye for Group 3.

Fig. 6.
Fig. 6.

Spot diagram of the optimized pseudoaphakic eye on the image plane.

Fig. 7.
Fig. 7.

rms radius on the image plane according to the variable-radius interface of the two liquids. The two disconnected points stand for the limit variable-focus state.

Tables (3)

Tables Icon

Table 1. Optical Data of Gullstrand–Le Grand Human

Tables Icon

Table 2. Three Groups of Structural Data

Tables Icon

Table 3. Structural Data of the Two Aspherical Lenses after Optimization

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f=rn2n1,
f=1n1n2acosθ+ε0εr(n1n2)2eaγ12V2,
d1=kd+[2r3+2r2(r2a2)1/23a2r2a2(r2a2)1/2]/(3a2),r<0,
d1=kd+[2r32r2(r2a2)1/23a2r+2a2(r2a2)1/2]/(3a2),r>0,
d2=dd1,
z=cr21+1(1+k)c2r2+i=18αir2i,

Metrics