Abstract

In this article we study modified optical beams used as optical tweezers for guiding biological micro-objects. We mean to achieve more efficient micromanipulation by using crescent intensity distribution. During laboratory experiments to test their theoretical projections we manufactured a diffractive optical element (DOE) to generate the proposed intensity distribution. Experimental estimations are provided for DOE energy efficiency. We conduct both theoretical and experimental studies of the crescent beam trapping strength. It transpires that in some cases crescent-shaped beams are more efficient than more commonly used Gaussian beams.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef]
  3. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
    [CrossRef]
  4. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
    [CrossRef]
  5. S. Thanh and N. C. Zakharov, “Photogenerated singlet oxygen damages cells in optical traps,” arXiv:0911.4651 (2009).
  6. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [CrossRef]
  7. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
    [CrossRef]
  8. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16, 20987–21003 (2008).
    [CrossRef]
  9. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
    [CrossRef]
  10. H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19, 13285–13290 (2011).
    [CrossRef]
  11. A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).
  12. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, “Multi force optical tweezers to generate gradients of forces,” Opt. Express 12, 3906–3910 (2004).
    [CrossRef]
  13. R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre–Gaussian mode,” Opt. Express 19, 7680–7688 (2011).
    [CrossRef]
  14. V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011).
    [CrossRef]
  15. Q. Sun, K. Zhou, G. Fang, G. Zhang, Z. Liu, and S. Liu, “Hollow sinh–Gaussian beams and their paraxial properties,” Opt. Express 20, 9682–9691 (2012).
    [CrossRef]
  16. C. C. Olson, R. T. Schermer, and F. Bucholtz, “Tailored optical force fields using evolutionary algorithms,” Opt. Express 19, 18543–18557 (2011).
    [CrossRef]
  17. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical ‘cogwheel’ tweezers,” Opt. Express 12, 4129–4135 (2004).
    [CrossRef]
  18. Y. Jiang, K. Huang, and X. Lu, “Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle,” Opt. Express 19, 9708–9713 (2011).
    [CrossRef]
  19. O. Steuernagel, “Coherent transport and concentration of particles in optical traps using varying transverse beam profiles,” J. Opt. A 7, S392–S398 (2005).
    [CrossRef]
  20. V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
    [CrossRef]
  21. E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
    [CrossRef]
  22. E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
    [CrossRef]
  23. T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
    [CrossRef]
  24. R. V. Skidanov, “Computing the interaction force between a laser beam and arbitrary shape particles,” Comput. Opt. 28, 18–21 (2005).
  25. S. B. Kim, K. H. Lee, S. S. Kim, and H. J. Sung, “Optical force on a pair of concentric spheres in a focused laser beam: ray-optics regime,” J. Opt. Soc. Am. B 29, 2531–2541 (2012).
    [CrossRef]
  26. R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).
  27. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
    [CrossRef]
  28. V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
    [CrossRef]
  29. V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001).
    [CrossRef]
  30. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef]

2012 (2)

2011 (6)

2010 (1)

R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).

2008 (3)

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16, 20987–21003 (2008).
[CrossRef]

2007 (1)

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

2006 (1)

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

2005 (3)

O. Steuernagel, “Coherent transport and concentration of particles in optical traps using varying transverse beam profiles,” J. Opt. A 7, S392–S398 (2005).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

R. V. Skidanov, “Computing the interaction force between a laser beam and arbitrary shape particles,” Comput. Opt. 28, 18–21 (2005).

2004 (3)

2003 (1)

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef]

2002 (2)

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

2001 (1)

V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001).
[CrossRef]

1998 (1)

V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
[CrossRef]

1996 (1)

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

1986 (1)

Abramochkin, E. G.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

Afanasiev, K. N.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

Ahlawat, S.

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[CrossRef]

Ashkin, A.

Axner, O.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

Bachor, H.-A.

V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011).
[CrossRef]

Bernet, S.

Berns, M. W.

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef]

Bucholtz, F.

Chu, S.

Cojoc, D.

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

Coppey-Moisan, M.

Daria, V. R.

V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011).
[CrossRef]

Dasgupta, R.

Di Fabrizio, E.

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

Durieux, C.

Dziedzic, J. M.

Emiliani, V.

Fällman, E.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

Fang, G.

Ferrari, E.

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

Forde, N. R.

Fürhapter, S.

Garbin, V.

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

Gerbal, F.

Gittes, F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef]

Go, M. A.

V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011).
[CrossRef]

Gupta, P. K.

Huang, K.

Jesacher, A.

Jiang, Y.

Kim, S. B.

Kim, S. S.

König, K.

Korobtsov, A. V.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

Kotlyar, V.

V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
[CrossRef]

Kotlyar, V. V.

V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001).
[CrossRef]

Kotova, S. P.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

Lee, K. H.

Leitz, G.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

Li, B.

Liang, H.

Liu, S.

Liu, Z.

Losevskii, N. N.

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

Losevsky, N. N.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

Lu, X.

Matsudaira, P.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Mayorova, A. M.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

Melehin, A. S.

V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001).
[CrossRef]

Mir, M.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Mirsaidov, U.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Moradi, A.

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

Morishita, S.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Ohtani, M.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Ohya, Y.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Olson, C. C.

Peterman, E. J.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef]

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[CrossRef]

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[CrossRef]

Rakhmatulin, M. A.

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

Razueva, E. V.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

Ritsch-Marte, M.

Rykov, M. A.

R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).

Saito, T. L.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Saka, A.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Sano, F.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Sanvitto, D.

Sawai, H.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Schermer, R. T.

Schmidt, C. F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef]

Seraphimovich, P.

V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
[CrossRef]

Skidanov, R. V.

R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).

R. V. Skidanov, “Computing the interaction force between a laser beam and arbitrary shape particles,” Comput. Opt. 28, 18–21 (2005).

Soifer, V.

V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
[CrossRef]

Steuernagel, O.

O. Steuernagel, “Coherent transport and concentration of particles in optical traps using varying transverse beam profiles,” J. Opt. A 7, S392–S398 (2005).
[CrossRef]

Sun, Q.

Sung, H. J.

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef]

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[CrossRef]

Thanh, S.

S. Thanh and N. C. Zakharov, “Photogenerated singlet oxygen damages cells in optical traps,” arXiv:0911.4651 (2009).

Timp, G.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Timp, K.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Timp, W.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Tromberg, B. J.

Tuck, S.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

van der Horst, A.

Verma, R. S.

Volostnikov, V. G.

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

Watanabe, D.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Xin, H.

Yukawa, M.

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Zahid, M.

Zakharov, N. C.

S. Thanh and N. C. Zakharov, “Photogenerated singlet oxygen damages cells in optical traps,” arXiv:0911.4651 (2009).

Zhang, G.

Zhou, K.

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef]

Biophys. J. (2)

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[CrossRef]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef]

Bull. Russ. Acad. Sci., Phys (1)

E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008).
[CrossRef]

Comput. Opt. (2)

R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).

R. V. Skidanov, “Computing the interaction force between a laser beam and arbitrary shape particles,” Comput. Opt. 28, 18–21 (2005).

J. Opt. (1)

V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011).
[CrossRef]

J. Opt. A (1)

O. Steuernagel, “Coherent transport and concentration of particles in optical traps using varying transverse beam profiles,” J. Opt. A 7, S392–S398 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006).
[CrossRef]

Nat. Photonics (1)

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[CrossRef]

Nucleic Acids Res. (1)

T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004).
[CrossRef]

Opt. Express (9)

Q. Sun, K. Zhou, G. Fang, G. Zhang, Z. Liu, and S. Liu, “Hollow sinh–Gaussian beams and their paraxial properties,” Opt. Express 20, 9682–9691 (2012).
[CrossRef]

C. C. Olson, R. T. Schermer, and F. Bucholtz, “Tailored optical force fields using evolutionary algorithms,” Opt. Express 19, 18543–18557 (2011).
[CrossRef]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical ‘cogwheel’ tweezers,” Opt. Express 12, 4129–4135 (2004).
[CrossRef]

Y. Jiang, K. Huang, and X. Lu, “Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle,” Opt. Express 19, 9708–9713 (2011).
[CrossRef]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, “Multi force optical tweezers to generate gradients of forces,” Opt. Express 12, 3906–3910 (2004).
[CrossRef]

R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre–Gaussian mode,” Opt. Express 19, 7680–7688 (2011).
[CrossRef]

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16, 20987–21003 (2008).
[CrossRef]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005).
[CrossRef]

H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19, 13285–13290 (2011).
[CrossRef]

Opt. Lasers Eng. (1)

V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998).
[CrossRef]

Opt. Lett. (2)

Optoelectron. Adv. Mater. (1)

A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).

Phys. Rev. E (1)

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Proc. SPIE (1)

V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001).
[CrossRef]

Quantum Electron. (1)

V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

Other (1)

S. Thanh and N. C. Zakharov, “Photogenerated singlet oxygen damages cells in optical traps,” arXiv:0911.4651 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Map of the x component of the force exerted by a Gaussian beam (5-μm width, 100 mW) upon a spherical 5-μm object.

Fig. 2.
Fig. 2.

Modified Gaussian beam.

Fig. 3.
Fig. 3.

Intensity profile in accordance with different values of t1 and t2 parameters.

Fig. 4.
Fig. 4.

Function with local maximum that would attract gradient search without modification.

Fig. 5.
Fig. 5.

Optimized intensity pattern (numerical simulation).

Fig. 6.
Fig. 6.

Theoretical (left) and experimental (right) crescent beam intensity patterns.

Fig. 7.
Fig. 7.

Phase function of a DOE to form a crescent intensity pattern.

Fig. 8.
Fig. 8.

Microrelief of the fabricated DOE.

Fig. 9.
Fig. 9.

Optical setup for measuring the energy efficiency of the crescent beam.

Fig. 10.
Fig. 10.

Experimental optical arrangement.

Fig. 11.
Fig. 11.

Two yeast cells guided by the crescent beam.

Fig. 12.
Fig. 12.

Particle velocity as a function of time in two events in the experiments with a Gaussian beam and a crescent beam.

Fig. 13.
Fig. 13.

(a)–(c) Trapping the yeast cells in a crescent beam. The black spot marks the position of a cell unmoving with respect to the objective table. The white arrow shows the position of the trapped particle. The frames were taken at a 0.55-s interval.

Fig. 14.
Fig. 14.

(a)–(c) Trapping the yeast cells in a Gaussian beam. Black spot marks the position of a cell unmoving with respect to the objective table. White arrow shows the position of the trapped particle. The frames were taken at a 0.55-s interval.

Fig. 15.
Fig. 15.

Results of maximal force and average force experimental measurements, both with Gaussian and crescent-shaped beams.

Tables (3)

Tables Icon

Table 1. Magnitudes of Force Exerted on an Object of Radius R=5μm by 300-mW Beams with Different Intensity Distributions

Tables Icon

Table 2. Measurement Results for the Crescent-Beam Energy Efficiency

Tables Icon

Table 3. Comparison of the Experimental Results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A(x,y)=exp(x2a2)exp((yc(x))2(t2×a)2),c(x)=r2x2r+d,r=a2×(1+t12t1).
f(x)=A(t⃗k+xA(t⃗k)),
dmin=λ2n0.2μm.
Fi=ΔPΔt=1c0(Ira⃗rIda⃗dIea⃗e),
Fmax=vmax6πrη,
σ=FI
σcrescσgauss=0.88σΔ0.31σΔ=2.8,
σcrescσgauss=4.21·1011sm1.6·1011sm2.6.

Metrics