Abstract

Photoacoustic microscopy (PAM) is sensitive to optical absorption, while optical coherence tomography (OCT) is based on optical backscattering. Combining PAM and OCT can provide complementary information about biological tissue. Here we present a combined optical-resolution PAM (ORPAM) and OCT system that is integrated through a miniature probe with an overall diameter of 2.3 mm, suitable for insertion through a standard endoscopic or laparoscopic port during minimally invasive surgery or endoscopic exam. The hybrid probe consists of a common optical path for OCT (light delivery/detection) and ORPAM (light excitation) and a 10 MHz unfocused ultrasound transducer for photoacoustic detection. The combined system yields a lateral resolution of 15 μm for both ORPAM and OCT.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
    [CrossRef]
  2. S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
    [CrossRef]
  3. L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
    [CrossRef]
  4. L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
    [CrossRef]
  5. L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
    [CrossRef]
  6. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007).
    [CrossRef]
  7. L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
    [CrossRef]
  8. Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006).
    [CrossRef]
  9. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).
    [CrossRef]
  10. E. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express 2, 2202–2215 (2011).
    [CrossRef]
  11. J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34, 1591–1593 (2009).
    [CrossRef]
  12. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Opt. Lett. 37, 1244–1246 (2012).
    [CrossRef]
  13. Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express 2, 2551–2561 (2011).
    [CrossRef]
  14. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, 2007).
  15. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31, 3623–3625 (2006).
    [CrossRef]

2013 (1)

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
[CrossRef]

2012 (3)

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Opt. Lett. 37, 1244–1246 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (2)

Aguirre, A.

Alex, A.

Amirian, J.

Arbeit, J. M.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Beard, P.

Brewer, M.

Cox, B.

Drexler, W.

Emelianov, S.

Fawzi, A.

Galanzha, E. I.

Glittenberg, C.

Grobmyer, S.

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

Grobmyer, S. R.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Hofer, B.

Hu, J.

Hu, S.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[CrossRef]

Ji, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
[CrossRef]

Jiang, H.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
[CrossRef]

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007).
[CrossRef]

Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006).
[CrossRef]

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Jiang, M.

Jiao, S.

Karpiouk, A.

Khlebtsov, N. G.

Kovalski, J. R.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Kumavor, P. D.

Laufer, J.

Li, X.

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express 2, 2551–2561 (2011).
[CrossRef]

Litovsky, S.

Maslov, K.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34, 1591–1593 (2009).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[CrossRef]

Oladipupo, S.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Pedley, B.

Povazay, B.

Puliafito, C. A.

Qian, W.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Sanders, M.

Santeford, A.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Shashkov, E. V.

Shohet, R.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Shung, K. K.

Smalling, R.

Treeby, B.

Tuchin, V. V.

Wang, B.

Wang, L. V.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34, 1591–1593 (2009).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[CrossRef]

Wang, Q.

Wang, T.

Xi, L.

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Xiang, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
[CrossRef]

Yang, H. C.

Yang, J. M.

Yang, L.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Yang, Y.

Yao, J.

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Yao, L.

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

Yeager, D.

Yin, L.

Yuan, Z.

Zhang, E.

Zhang, H. F.

Zhang, Q.

Zharov, V. P.

Zhou, G.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Zhou, L.

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Zhou, Q.

Zhu, Q.

Appl. Phys. Lett. (1)

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Biomed. Opt. Express (2)

Blood (1)

S. Oladipupo, S. Hu, A. Santeford, J. Yao, J. R. Kovalski, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence,” Blood 117, 4142–4153 (2011).
[CrossRef]

Med. Phys. (1)

L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography (PAT/DOT) system for breast cancer detection,” Med. Phys. 39, 2584–2594 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Sci. Rep. (1)

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4D photoacoustic tomography,” Sci. Rep. 3, 11132013 (online version).
[CrossRef]

Other (2)

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics (2012).
[CrossRef]

Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic (a) and photograph (b) of the hybrid probe.

Fig. 2.
Fig. 2.

Schematic of the integrated ORPAM and OCT system. ND, neutral density; L1, lens 1; L2, lens 2; L3, lens 3; BP, beam splitter; PD, photodiode.

Fig. 3.
Fig. 3.

Resolution test for ORPAM and OCT. 1D profile of (a) OCT and (b) ORPAM of group 6, element 1.

Fig. 4.
Fig. 4.

Signal calibration. (a) Schematic of the probe (bottom view). (b), (c) Typical A-line (Hilbert transform of raw data) without (b) and with (c) calibration.

Fig. 5.
Fig. 5.

In vivo imaging of mouse ear by the integrated probe. MAP image (top) and cross section (bottom) of ORPAM (a) and OCT (b). ED, epidermis; CT, cartilage; D, dermis; BV, blood vessel.

Metrics