Abstract

Digital in-line holographic microscopy (DIHM) allows access to both intensity and phase information with conventional microscopic lateral resolutions. Such imaging techniques can, however, be used to increase the depth of focus compared to conventional compound microscopes. We present a simple DIHM capable of imaging weakly scattering 10 μm diameter microspheres as well as Hs578T cells over a depth of 1 mm; i.e., we demonstrate an increase by a factor of 100 over the depth of focus of a conventional microscope.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958).
    [CrossRef]
  2. I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962).
    [CrossRef]
  3. M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962).
    [CrossRef]
  4. Wyeth, www.wyeth.com , retrieved July 2009.
  5. Genentec, www.gene.com , retrieved July 2009.
  6. Amgen, www.amgen.com , retrieved July 2009.
  7. M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells,” Nat. Biotechnol. 22, 1393–1398 (2004).
    [CrossRef]
  8. G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
    [CrossRef]
  9. N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
    [CrossRef]
  10. J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
    [CrossRef]
  11. Focus Beam Reflectance Measurement system, www.mt.com/FBRM , retrieved September 2010.
  12. Particle Vision Measurement system, www.mt.com/PVM , retrieved September 2010.
  13. M. Minsky, Microscopy Apparatus, U. S. Patent 3,013,467(19December1961).
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  15. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1  frame/ms scanning confocal microscope with a microlens and nipkow disks,” Appl. Opt. 41, 4704–4708 (2002).
    [CrossRef]
  16. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  18. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
    [CrossRef]
  19. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010).
    [CrossRef]
  20. J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
    [CrossRef]
  21. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  22. R. R. A. Syms, Practical Volume Holography (Oxford University, 1990).
  23. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
    [CrossRef]
  24. P. F. MacLoughlin, “A Holographic Study of Interacting Liquid,” Ph. D. Sprays dissertation (University College Dublin, 1976).
  25. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  26. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  27. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  28. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004).
    [CrossRef]
  29. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
    [CrossRef]
  30. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009).
    [CrossRef]
  31. A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
    [CrossRef]
  32. J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
    [CrossRef]
  33. J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic Laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010).
    [CrossRef]
  34. J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
    [CrossRef]
  35. S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007).
    [CrossRef]
  36. D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
    [CrossRef]
  37. Nikon Microscopy Education Resource, http://www.microscopyu.com/articles/optics/objectiveproperties.html , retrieved September 2010.
  38. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).
  39. U. Schnars and W. Jüptner, Digital Holography (Springer-Verlag, 2005).
  40. J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988).
    [CrossRef]
  41. J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991).
    [CrossRef]
  42. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [CrossRef]
  43. D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
    [CrossRef]
  44. D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4f imaging system with coherent and incoherent illumination,” J. Opt. Soc. Am. A 24, 1911–1919 (2007).
    [CrossRef]
  45. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
    [CrossRef]
  46. C.-S. Guo, Q.-Y. Yue, G.-X. Wei, L.-L. Lu, and S.-J. Yue, “Laplacian differential reconstruction of in-line holograms recorded at two different distances,” Opt. Lett. 33, 1945–1947 (2008).
    [CrossRef]
  47. C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
    [CrossRef]
  48. P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002).
    [CrossRef]
  49. K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
    [CrossRef]

2011 (4)

J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
[CrossRef]

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

2010 (3)

2009 (5)

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009).
[CrossRef]

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

2008 (5)

C.-S. Guo, Q.-Y. Yue, G.-X. Wei, L.-L. Lu, and S.-J. Yue, “Laplacian differential reconstruction of in-line holograms recorded at two different distances,” Opt. Lett. 33, 1945–1947 (2008).
[CrossRef]

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
[CrossRef]

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

2007 (2)

2006 (3)

2004 (3)

2002 (2)

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1  frame/ms scanning confocal microscope with a microlens and nipkow disks,” Appl. Opt. 41, 4704–4708 (2002).
[CrossRef]

P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002).
[CrossRef]

1997 (1)

1994 (1)

1991 (2)

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1988 (1)

J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988).
[CrossRef]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

1962 (2)

I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962).
[CrossRef]

M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962).
[CrossRef]

1958 (1)

J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958).
[CrossRef]

1948 (2)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[CrossRef]

Ahrenberg, L.

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

Alm, K.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Artelle, F.

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Barrett, P.

P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002).
[CrossRef]

Barton, J. J.

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991).
[CrossRef]

J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988).
[CrossRef]

Berneth, H.

Bernhardt, I.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Bluma, A.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Boyce, C. R.

M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962).
[CrossRef]

Bruder, F.-K.

Cassar, J. P.

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Y.

Colomb, T.

Cuche, E.

Depeursinge, C.

Dhulster, P.

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Dirksen, D.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Elhinney, C. P. Mc

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

Emery, Y.

Fäcke, T.

Flaschel, E.

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Friehs, K.

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gao, Y.

Garcia-Sucerquia, J.

Ge, B.

Georgiev, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Gisselson, L.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Gleeson, M. R.

Glennon, B.

P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).

Gopinathan, U.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Guez, J. S.

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Guo, C.-S.

Gustafsson, M.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Healy, J. J.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hennelly, B. M.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
[CrossRef]

Hitzmann, B.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ishida, H.

Ivanova, L.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Jericho, M. H.

Jericho, S. K.

Joeris, K.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Jüptner, W.

Katz, J.

Kelly, D. P.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4f imaging system with coherent and incoherent illumination,” J. Opt. Soc. Am. A 24, 1911–1919 (2007).
[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
[CrossRef]

Kemper, B.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Ketelhut, S.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Klages, P.

Kosugi, Y.

Kou, S. S.

Kreuzer, H. J.

Kühn, J.

Langehanenberg, P.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Li, D.

J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic Laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lindner, P.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Lu, L.-L.

Lü, Q.

MacLoughlin, P. F.

P. F. MacLoughlin, “A Holographic Study of Interacting Liquid,” Ph. D. Sprays dissertation (University College Dublin, 1976).

MacPherson, I. A.

I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962).
[CrossRef]

Malkiel, E.

Martinez, G.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

McDonnell, S.

J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
[CrossRef]

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

Minsky, M.

M. Minsky, Microscopy Apparatus, U. S. Patent 3,013,467(19December1961).

Mölder, A.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Molony, K. M.

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

Nattkemper, T. W.

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

Naughton, T. J.

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

Osten, W.

Otsuki, S.

Pavillon, N.

Pedrini, G.

Piano, E.

Pontiggia, C.

Potter, M.

M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962).
[CrossRef]

Puck, T. T.

J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Repetto, L.

Rhodes, W. T.

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4f imaging system with coherent and incoherent illumination,” J. Opt. Soc. Am. A 24, 1911–1919 (2007).
[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
[CrossRef]

Rölle, T.

Rudolph, G.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Ryle, J. P.

J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic Laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010).
[CrossRef]

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
[CrossRef]

Scheper, T.

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Schnars, U.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sebesta, M.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[CrossRef]

Sheng, J.

Sheppard, C. J.

Sheridan, J. T.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic Laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010).
[CrossRef]

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4f imaging system with coherent and incoherent illumination,” J. Opt. Soc. Am. A 24, 1911–1919 (2007).
[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
[CrossRef]

Shimizu, M.

Situ, G.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stoker, M. G. P.

I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962).
[CrossRef]

Suhr, H.

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Oxford University, 1990).

Tanaami, T.

Tiziani, H. J.

Tjio, J. H.

J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958).
[CrossRef]

Tomosada, N.

Vollmer, A.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

von Bally, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Wei, G.-X.

Wei, N.

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

Weiser, M.-S.

Wingren, A. Gjörloff

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

Wurm, M.

M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells,” Nat. Biotechnol. 22, 1393–1398 (2004).
[CrossRef]

Xu, W.

Yamaguchi, I.

Yuan, R.

Yue, Q.-Y.

Yue, S.-J.

Zhang, T.

Zhang, Y.

Adv. Biochem. Eng. Biotechnol. (1)

G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
[CrossRef]

BMC Bioinf. (1)

N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008).
[CrossRef]

Chem. Eng. Res. Des. (1)

P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002).
[CrossRef]

J. Biomed. Opt. (2)

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011).
[CrossRef]

J. Eur. Opt. Soc. (1)

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011).
[CrossRef]

J. Exp. Med. (1)

J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958).
[CrossRef]

J. Microsc. (1)

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells,” Nat. Biotechnol. 22, 1393–1398 (2004).
[CrossRef]

Nature (2)

M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962).
[CrossRef]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Eng. (2)

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).
[CrossRef]

J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988).
[CrossRef]

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991).
[CrossRef]

Proc. SPIE (3)

C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009).
[CrossRef]

J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009).
[CrossRef]

Process Biochem. (1)

J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Virology (1)

I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962).
[CrossRef]

Other (11)

Focus Beam Reflectance Measurement system, www.mt.com/FBRM , retrieved September 2010.

Particle Vision Measurement system, www.mt.com/PVM , retrieved September 2010.

M. Minsky, Microscopy Apparatus, U. S. Patent 3,013,467(19December1961).

Wyeth, www.wyeth.com , retrieved July 2009.

Genentec, www.gene.com , retrieved July 2009.

Amgen, www.amgen.com , retrieved July 2009.

P. F. MacLoughlin, “A Holographic Study of Interacting Liquid,” Ph. D. Sprays dissertation (University College Dublin, 1976).

R. R. A. Syms, Practical Volume Holography (Oxford University, 1990).

Nikon Microscopy Education Resource, http://www.microscopyu.com/articles/optics/objectiveproperties.html , retrieved September 2010.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).

U. Schnars and W. Jüptner, Digital Holography (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Imaging geometry of a thin lens including the imaging spot showing lateral [see Eq. (2)] and longitudinal [see Eq. (3)] resolutions; see MO2 in Fig. 2.

Fig. 2.
Fig. 2.

DIHM experimental setup including He–Ne laser; NDF, neutral density filter; MO1 and MO2, microscopic objectives; SF, pinhole; CL, collimating lens; CCD, sample volume and camera.

Fig. 3.
Fig. 3.

(a) Intensity hologram and (b) entropy curve [see Eq. (7)] showing the numerically detected locations of the two layers of latex microspheres at z 1 = 1 mm and z 2 = 2 mm from the focal plane of the MO.

Fig. 4.
Fig. 4.

(a) Shows the magnitude of the reconstructed image at z 1 = 1 mm , while (b) shows the magnitude of the reconstruction image at z 2 = 2 mm .

Fig. 5.
Fig. 5.

Each image consists of 256 × 256 pixel subsections for reconstruction at (a)  z 1 , while reconstruction at z 2 is presented in (b). A white 50 μm scale bar is included in each.

Fig. 6.
Fig. 6.

3D volume representing the two layers (bounded by dashed lines) where 10 μm latex microspheres have been detected using cross correlating with a reference image.

Fig. 7.
Fig. 7.

(a) Hs578T intensity hologram and (b) entropy curve [see Eq. (7)]. Two regions are highlighted. The red square contains cells at z 1 = 3 mm . The yellow triangle contains cells at z 2 = 4 mm , both distances measured from the focal plane of the MO.

Fig. 8.
Fig. 8.

Reconstructed amplitude images from the single hologram [see Fig. 7(a)] at reconstruction depths from the MO focal plane: (a)  z 1 = 3 mm (red square in focus) and (b)  z 2 = 4 mm (yellow triangle in focus). A 100 μm scale is included in each image.

Fig. 9.
Fig. 9.

PVM captured image ( 680 × 512 pixels) of mammalian cells grown in suspension. A small reference area containing a single cell is highlighted by the inner yellow bordered box. The outer dashed black box represents an area containing 512 × 512 pixels.

Fig. 10.
Fig. 10.

(a) Resultant image after cross correlating the reference and target images from Fig. 9. A 0.5 threshold yields a binary location map. In (b) this map is overlaid on the target image to emphasize locations of detected cells. An area containing false identifications is highlighted by the dashed red box in (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

NA = n i sin θ ,
R = 0.61 λ n i sin θ = 0.61 λ NA ,
DOF = λ n i sin 2 θ = λ n i NA 2 .
Γ ( ξ , η ; z ) = h ( x , y ) g ( ξ , η , x , y ; z ) d x d y ,
g ( ξ , η , x , y ; z ) = i λ exp [ i 2 π λ ( x ξ ) 2 + ( y η ) 2 + z 2 ] ( x ξ ) 2 + ( y η ) 2 + z 2 .
Γ ( ξ , η ; z ) = I 1 { I [ h ( x , y ) ] ( ξ , η ; z ) × I [ g ( ξ , η , x , y ; z ) ] ( ξ , η ; z ) } ,
ENT ( · ) = x , y I ( x , y ) E log 2 [ I ( x , y ) E ] ,

Metrics