Abstract

Plasmonic emissions generated by excitation of an organic layer on a metal grating structure are demonstrated. The emissions correspond to the resonant condition of surface plasmon (SP) modes on the Alq3/Au interface, and the grating structure is coupled to the Au/air interface to provide light emissions. Experimental variations in pitch to control plasmonic bandgap obtained highly directional plasmonic emissions with enhanced intensity. This method is readily applicable for detecting refractive index changes by using SP-coupled fluorophores to obtain emissions of varying wavelengths and viewing angles. The calculations showed that the wavelength of the plasmonic emitter changed from 480 to 680 nm at certain viewing angles, while the concentration of contacting glucose increased from 10% to 40%. Accordingly, a device with a pitch size of 500 nm had a sensitivity of Δθe/Δn=37.76° and Δn/Δ=1.681×104 RIU (refractive index unit). Therefore, the proposed approach has potential applications in low-cost, disposable, point-of-care biosensors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–408 (1902).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  4. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  5. D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
    [CrossRef]
  6. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673–3685 (2004).
    [CrossRef]
  7. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
    [CrossRef]
  8. I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
    [CrossRef]
  9. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
    [CrossRef]
  10. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
    [CrossRef]
  11. J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
    [CrossRef]
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef]
  13. N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
    [CrossRef]
  14. N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
    [CrossRef]
  15. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20, 14042–14053 (2012).
    [CrossRef]
  16. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
    [CrossRef]
  17. K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
    [CrossRef]
  18. D. Cai, Y. Lu, K. Lin, P. Wang, and H. Ming, “Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM),” Opt. Express 16, 14597–14602 (2008).
    [CrossRef]
  19. A. J. Benahmed and C. M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46, 3369–3375 (2007).
    [CrossRef]
  20. S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
    [CrossRef]
  21. S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
    [CrossRef]
  22. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
    [CrossRef]
  23. S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  25. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
    [CrossRef]
  26. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
    [CrossRef]
  27. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
    [CrossRef]

2012

2009

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

2008

2007

A. J. Benahmed and C. M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46, 3369–3375 (2007).
[CrossRef]

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

2006

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

2005

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

2004

S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673–3685 (2004).
[CrossRef]

2003

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

2002

D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[CrossRef]

1999

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[CrossRef]

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

1996

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
[CrossRef]

1994

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

1980

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

1971

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1968

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

1902

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–408 (1902).
[CrossRef]

Adam, P.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Barnes, W. L.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
[CrossRef]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673–3685 (2004).
[CrossRef]

Benahmed, A. J.

Brillante, A.

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Bulovic, V.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Burrows, P. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Cai, D.

Cammann, K.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Chen, K. P.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

Chiu, N. F.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Chiu, N.-F.

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Chiu, T. L.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Dostálek, J.

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Forrest, S. R.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[CrossRef]

Giannattasio, A.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
[CrossRef]

Gifford, D.

D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[CrossRef]

Gralak, B.

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

Grawe, F.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

Hall, D. G.

D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Ho, C. M.

Ho, Y. H.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Homola, J.

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20, 14042–14053 (2012).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[CrossRef]

Hsiao, C. N.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
[CrossRef]

Kalkman, J.

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

Katerkamp, A.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Kawata, S.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Knoll, W.

Ko, Y. W.

S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Kuan, C.-H.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

Lee, C. K.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

Lee, C.-K.

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Lee, J. H.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Lee, J.-H.

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Lim, J. W.

S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
[CrossRef]

Lin, C. W.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

Lin, C.-W.

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Lin, J. R.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Lin, K.

Lin, S.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

Lu, Y.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

McCarty, D. M.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Meusel, M.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Ming, H.

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
[CrossRef]

Nien, S. Y.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Nien, S.-Y.

Okamoto, T.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pockrand, I.

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Polman, A.

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Sapochak, L. S.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Schult, K.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Strohhofer, C.

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

Thompson, M. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

Toma, K.

Toma, M.

Trau, D.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Wang, P.

Wedge, S.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673–3685 (2004).
[CrossRef]

Wei, M. K.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Winter, G.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–408 (1902).
[CrossRef]

Wu, K. C.

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

Wu, K.-C.

N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
[CrossRef]

Yu, C.

Yun, S. J.

S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
[CrossRef]

Anal. Chem.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003).
[CrossRef]

S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009).
[CrossRef]

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994).
[CrossRef]

S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[CrossRef]

Biochem. Biophys. Res. Commun.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[CrossRef]

Chem. Phys. Lett.

I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Opt. Express

Org. Electron.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007).
[CrossRef]

Philos. Mag.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–408 (1902).
[CrossRef]

Sens. Actuators B Chem.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[CrossRef]

Z. Phys.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Excitation of plasmonic emitter on periodically modulated lamellar grating nanostructure with SPP propagation. (a) Schematic diagram of plasmonic emitter technique applied in a periodic metal surface with immunoassay linker. (b) Schematic diagram showing a cross-sectional view of a simplified plasmonic emitter model device with Si/PR/Alq3/Au layer structure. (c) Schematic representation of dispersion curves showing SPPs propagating along metal grating surface of Au/air and Alq3/Au boundaries by plasmonic emitter cross-coupling become radiative light at different angles. (d) scanning electron microscopy images of Au (40 nm), Alq3 (80 nm), and photoresist, PR, (100 nm) fabricated on silicon substrate and (inset) 3-D atomic force microscopy images of PR-grating profiles with 500 nm pitch size.

Fig. 2.
Fig. 2.

Experimental PL emission obtained from a sample with grating structure. (a) PL 3-D emission image obtained from a grating pitch of 500 nm. (b) Directional emission spectra of plasmonic emitter. (c) Emission spectra coupled to 1931 CIE chromaticity diagram with spectra and angle coordinates.

Fig. 3.
Fig. 3.

Calculated and experimental results for four different pitch samples. Dispersion relations are indicated by (ωk). Solid symbols show the experimental data (m=1) with different grating pitches. Open symbols are the calculated results corresponding to m=0. Solid and dashed lines represent calculation results for the dispersion relation at the Au/air interface and in the air, respectively.

Fig. 4.
Fig. 4.

(a) Calculated dispersion relation in different species in contact with the top side of the sample and (b) calculated shift in CIE coordinates with a fixed viewing angle in different species.

Tables (1)

Tables Icon

Table 1. Range of SPCGE Emission Angle (θe), Emission angle with Maximum Emission Intensity (MPθe), and Momentum Shift (ΔK) at Varying Pitches

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k=kAlq3sinθ=ωcεAlq3εmεAlq3+εm±m2πΛ=ksp(Au/Alq3),
k=k0sinθ=ωcεm1+εm±m2πΛ=ksp(Au/air),
k=kdsinθ=ωcεdεmεd+εm±m2πΛ=ksp(Au/dielectric),
σn=ΔnΔλσλ.

Metrics