Abstract

Particle size is an important factor for determining the concentration of suspended particle matter (SPM) in water using optical remotely sensed data. We collected reflectance spectra of five SPM samples with different particle sizes in a controlled laboratory experiment using a spectroradiometer. The theoretical relationship between particle size distributions and backscattering coefficient was deduced based on a spectral reflectance model. The backscattering coefficient of the complete SPM sample can be computed using the linear weighted combination of four percentages of different subsamples. The spectral similarity scale results indicate the optimal optical bands and boundary conditions for particle size and concentration of SPM remote sensing. The particle size can be evaluated by optical remote sensing to improve the applicability and precision of remote sensing models for SPM concentration inversion.

© 2013 Optical Society of America

Full Article  |  PDF Article

Corrections

Yingcheng Lu, Guang Zheng, Qingjiu Tian, Chunguang Lyu, and Shaojie Sun, "Analyzing the effects of particle size on remotely sensed spectra: a study on optical properties and spectral similarity scale of suspended particulate matters in water: errata," Appl. Opt. 52, 3038-3038 (2013)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-52-13-3038

References

  • View by:
  • |
  • |
  • |

  1. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1997).
    [CrossRef]
  2. D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
    [CrossRef]
  3. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
    [CrossRef]
  4. M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
    [CrossRef]
  5. M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
    [CrossRef]
  6. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
    [CrossRef]
  7. E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
    [CrossRef]
  8. G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
    [CrossRef]
  9. R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
    [CrossRef]
  10. A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
    [CrossRef]
  11. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
    [CrossRef]
  12. D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
    [CrossRef]
  13. E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197–8203 (1984).
    [CrossRef]
  14. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
    [CrossRef]
  15. J. C. Winterwerp, “On the flocculation and settling velocity of estuarine mud,” Cont. Shelf Res. 22, 1339–1360 (2002).
    [CrossRef]
  16. J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
    [CrossRef]
  17. C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
    [CrossRef]
  18. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [CrossRef]
  19. H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef]
  20. Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
    [CrossRef]
  21. C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
    [CrossRef]
  22. C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
    [CrossRef]
  23. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef]
  24. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef]
  25. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996).
    [CrossRef]
  26. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  27. H. R. Gordon and W. R. McCluney, “Estimation of the sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
    [CrossRef]
  28. M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
    [CrossRef]
  29. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanog. 43, 1649–1662 (1998).
    [CrossRef]
  30. A. Bricaud, “Variations of light absorption by suspend particles with chlorophyll a concentration in oceanic (case I) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31045 (1998).
    [CrossRef]
  31. A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanog. 35, 562–582 (1990).
    [CrossRef]
  32. C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
    [CrossRef]
  33. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci. 67, 219–230 (2006).
  34. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
    [CrossRef]
  35. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  36. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef]
  37. P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).
  38. M. A. Islam, “Einstein–Smoluchowski diffusion equation: a discussion,” Phys. Scr. 70, 120–125 (2004).
    [CrossRef]
  39. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography (Academic Press, 1974), pp. 1–24.
  40. J. N. Sweet, “The spectral similarity scale and its application to the classification of hyperspectral remote sensing data,” in Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (IEEE, 2003), pp. 92–99.
  41. J. C. Granahan and J. N. Sweet, “An evaluation of atmospheric correction techniques using the spectral similarity scale,” in Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 2022–2024.

2012 (4)

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

2011 (2)

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
[CrossRef]

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
[CrossRef]

2009 (1)

E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
[CrossRef]

2008 (1)

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

2007 (1)

D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
[CrossRef]

2006 (3)

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci. 67, 219–230 (2006).

2004 (4)

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
[CrossRef]

M. A. Islam, “Einstein–Smoluchowski diffusion equation: a discussion,” Phys. Scr. 70, 120–125 (2004).
[CrossRef]

2003 (2)

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
[CrossRef]

2002 (2)

J. C. Winterwerp, “On the flocculation and settling velocity of estuarine mud,” Cont. Shelf Res. 22, 1339–1360 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

2001 (1)

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
[CrossRef]

2000 (1)

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

1999 (1)

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[CrossRef]

1998 (4)

M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
[CrossRef]

Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
[CrossRef]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanog. 43, 1649–1662 (1998).
[CrossRef]

A. Bricaud, “Variations of light absorption by suspend particles with chlorophyll a concentration in oceanic (case I) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31045 (1998).
[CrossRef]

1997 (2)

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1997).
[CrossRef]

1996 (1)

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996).
[CrossRef]

1994 (1)

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef]

1993 (1)

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef]

1990 (1)

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanog. 35, 562–582 (1990).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

1984 (1)

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197–8203 (1984).
[CrossRef]

1981 (1)

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

1975 (2)

H. R. Gordon and W. R. McCluney, “Estimation of the sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

Astoreca, R.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

Baker, E. T.

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197–8203 (1984).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

Binding, C. E.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci. 67, 219–230 (2006).

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
[CrossRef]

Booty, W. G.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

Boss, E.

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

Bowers, D. G.

D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci. 67, 219–230 (2006).

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
[CrossRef]

Bricaud, A.

A. Bricaud, “Variations of light absorption by suspend particles with chlorophyll a concentration in oceanic (case I) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31045 (1998).
[CrossRef]

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanog. 35, 562–582 (1990).
[CrossRef]

Brock, J. C.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Browers, D. G.

E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

Bukata, R. P.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
[CrossRef]

Castaing, P.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Chen, L.

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Chen, Q. D.

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Chen, Z. Q.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Clayton, T. D.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

de. Mulder, T.

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

Dekker, A. G.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
[CrossRef]

Deng, P. R.

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Doxaran, D.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Du, K. P.

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
[CrossRef]

Eleveld, M.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Ellis, K. M.

D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
[CrossRef]

Estapa, M. L.

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Fang, M.

Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

Fonstad, M. A.

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

Froidefond, J. M.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Fry, E. S.

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

Gentili, B.

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef]

Gordon, H. R.

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

H. R. Gordon and W. R. McCluney, “Estimation of the sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef]

Granahan, J. C.

J. C. Granahan and J. N. Sweet, “An evaluation of atmospheric correction techniques using the spectral similarity scale,” in Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 2022–2024.

Grant, J.

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

Harrington, J. A.

M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
[CrossRef]

Hatcher, A.

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

He, Y. Q.

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Hill, P.

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

Hu, C. M.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Huang, W.

Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
[CrossRef]

Islam, M. A.

M. A. Islam, “Einstein–Smoluchowski diffusion equation: a discussion,” Phys. Scr. 70, 120–125 (2004).
[CrossRef]

Jacobs, M. M.

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

Jago, C. F.

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

Jerome, J. H.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

Jones, S. E.

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

Jorgensen, P. V.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Krasemann, H.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Kyte, E.

E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
[CrossRef]

Lancelot, C.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

Lavelle, J. W.

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197–8203 (1984).
[CrossRef]

Lavender, S.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Lee, Z. P.

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
[CrossRef]

Legleiter, C. J.

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

Li, Y.

Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
[CrossRef]

Macpherson, P.

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

Manning, A. J.

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

Marani, M.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
[CrossRef]

Marcus, W. Andrew

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

Martens, C.

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

Mayer, L. M.

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

McCluney, W. R.

H. R. Gordon and W. R. McCluney, “Estimation of the sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef]

Mitchelson-Jacob, E. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
[CrossRef]

Mobley, C. D.

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[CrossRef]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1997).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography (Academic Press, 1974), pp. 1–24.

Muller-Karger, F. E.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Nellis, M. D.

M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
[CrossRef]

Patissier, B. D.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Peters, S.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Peters, S. W. M.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
[CrossRef]

Pope, R. M.

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1997).
[CrossRef]

Qin, Y.

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Rippeth, T.

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

Roberts, D. A.

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

Roesler, C. S.

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanog. 43, 1649–1662 (1998).
[CrossRef]

Röttgers, R.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Rousseau, V.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

Ruddick, K.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Schönfeld, W.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Shi, W.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
[CrossRef]

Shutler, J. D.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Silvestri, S.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

Sorensen, K.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Stramski, D.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanog. 35, 562–582 (1990).
[CrossRef]

Swarzenski, P.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Sweet, J. N.

J. N. Sweet, “The spectral similarity scale and its application to the classification of hyperspectral remote sensing data,” in Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (IEEE, 2003), pp. 92–99.

J. C. Granahan and J. N. Sweet, “An evaluation of atmospheric correction techniques using the spectral similarity scale,” in Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 2022–2024.

Sykes, P.

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

Tang, J. W.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
[CrossRef]

Tilstone, G.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Van der Lee, E. M.

E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
[CrossRef]

Vanlede, J.

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

Vicente, V. M.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Volpe, V.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
[CrossRef]

Vos, R. J.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
[CrossRef]

Wang, M.

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef]

Wang, M. H.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
[CrossRef]

Winterwerp, J. C.

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

J. C. Winterwerp, “On the flocculation and settling velocity of estuarine mud,” Cont. Shelf Res. 22, 1339–1360 (2002).
[CrossRef]

Woerd, V. D. H.

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

Wu, J. P.

M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
[CrossRef]

Appl. Opt. (9)

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004).
[CrossRef]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[CrossRef]

H. R. Gordon and M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996).
[CrossRef]

H. R. Gordon and W. R. McCluney, “Estimation of the sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

Cont. Shelf Res. (5)

Y. Li, W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Cont. Shelf Res. 18, 487–500 (1998).
[CrossRef]

J. C. Winterwerp, “On the flocculation and settling velocity of estuarine mud,” Cont. Shelf Res. 22, 1339–1360 (2002).
[CrossRef]

C. F. Jago, S. E. Jones, P. Sykes, and T. Rippeth, “Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: relative contributions of resuspension and disaggregation,” Cont. Shelf Res. 26, 2019–2028 (2006).
[CrossRef]

E. M. Van der Lee, D. G. Browers, and E. Kyte, “Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale,” Cont. Shelf Res. 29, 1213–1225 (2009).
[CrossRef]

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[CrossRef]

Estuar. Coast. Shelf Sci. (3)

J. C. Winterwerp, A. J. Manning, C. Martens, T. de. Mulder, and J. Vanlede, “A heuristic formula for turbulence-induced flocculation of cohesive sediment,” Estuar. Coast. Shelf Sci. 68, 195–207 (2006).
[CrossRef]

D. G. Bowers, C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuar. Coast. Shelf Sci. 73, 457–466 (2007).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci. 67, 219–230 (2006).

Geomorphology (1)

M. D. Nellis, J. A. Harrington, and J. P. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology 21, 281–293 (1998).
[CrossRef]

Int. J. Remote Sens. (1)

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24, 3791–3806 (2003).
[CrossRef]

J. Geophys. Res. (3)

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197–8203 (1984).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

A. Bricaud, “Variations of light absorption by suspend particles with chlorophyll a concentration in oceanic (case I) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31045 (1998).
[CrossRef]

J. Remote Sens. (1)

P. R. Deng, Y. Q. He, Y. Qin, Q. D. Chen, and L. Chen, “Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm,” J. Remote Sens. 16, 174–191 (2012).

Limnol. Oceanog. (5)

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanog. 35, 562–582 (1990).
[CrossRef]

M. L. Estapa, E. Boss, L. M. Mayer, and C. S. Roesler, “Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters,” Limnol. Oceanog. 57, 97–112 (2012).
[CrossRef]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanog. 43, 1649–1662 (1998).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanog. 48, 843–859 (2003).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1997).
[CrossRef]

Mar. Geol. (1)

A. Hatcher, P. Hill, J. Grant, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Mar. Geol. 168, 115–128 (2000).
[CrossRef]

Phys. Scr. (1)

M. A. Islam, “Einstein–Smoluchowski diffusion equation: a discussion,” Phys. Scr. 70, 120–125 (2004).
[CrossRef]

Remote Sens. Environ. (7)

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008).
[CrossRef]

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

C. J. Legleiter, D. A. Roberts, W. Andrew Marcus, and M. A. Fonstad, “Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility,” Remote Sens. Environ. 93, 493–510 (2004).
[CrossRef]

G. Tilstone, S. Peters, V. D. H. Woerd, M. Eleveld, K. Ruddick, W. Schönfeld, H. Krasemann, V. M. Vicente, B. D. Patissier, R. Röttgers, K. Sorensen, P. V. Jorgensen, and J. D. Shutler, “Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters,” Remote Sens. Environ. 118, 320–338 (2012).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115, 44–54 (2011).
[CrossRef]

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115, 841–854 (2011).
[CrossRef]

Sci. Total Environ. (1)

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268, 197–214 (2001).
[CrossRef]

Other (3)

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography (Academic Press, 1974), pp. 1–24.

J. N. Sweet, “The spectral similarity scale and its application to the classification of hyperspectral remote sensing data,” in Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (IEEE, 2003), pp. 92–99.

J. C. Granahan and J. N. Sweet, “An evaluation of atmospheric correction techniques using the spectral similarity scale,” in Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 2022–2024.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulation experiment of different SPM in water.

Fig. 2.
Fig. 2.

Reflectance spectra of different SPM samples in water.

Fig. 3.
Fig. 3.

Linear relationship of backscattering coefficients between complete sample and subsamples (50 bands from 400 to 900 nm).

Fig. 4.
Fig. 4.

SSVs between complete sample and different subsamples (400–900 nm).

Fig. 5.
Fig. 5.

SSVs between the complete sample and subsamples in different spectral ranges.

Tables (1)

Tables Icon

Table 1. Absorption [aw, as(λ)] and Backscattering Coefficient (bbw) of Bands

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Rrs=LwEd.
R=fbb(λ)a(λ)+bb(λ),
Rrs=(1ρ)(1ρ¯)n2(1r¯R)*RQ,
Rrs=(1ρ)(1ρ¯)n2(1r¯R)*fQ*bb(λ)a(λ)+bb(λ).
Rrs0.54*0.333.5*bb(λ)a(λ)+bb(λ)=0.051*bb(λ)a(λ)+bb(λ).
a(λ)=aw(λ)+as(λ),
bb(λ)=bbw(λ)+bbs(λ),
as(λ)=as(λ0)*e(s*(λ0λ)),
bbs(λ)=bbsa*(λ)*Csa,
bbsa*(λ)*Csa=i=1nbbsi*(λ)*Ci.
bbsa*(λ)*csa=bbs1*(λ)*cs1+bbs2*(λ)*cs2+bbs3*(λ)*cs3+bbs4*(λ)*cs4.
csa=cs1+cs2+cs3+cs4.
Rrsa=0.051*bbw(λ)+bbsa*(λ)*Csa(aw(λ)+as(λ))+(bbw(λ)+bbsa*(λ)*Csa),
bbsa*(λ)*csa=Rrsa*((aw(λ)+as(λ))+bbw(λ))0.051*bbw(λ)0.051Rrsa.
Rrsa*((aw(λ)+as(λ))+bbw(λ))0.051*bbw(λ)0.051Rrsa=i=14Rrsi*((aw(λ)+as(λ))+bbw(λ))0.051*bbw(λ)0.051Rrsi*CsiCsa.
SSV=[DAED2+DiCorr2]1/2,
DAED=[Nb1k=1Nb(AkBk)2]1/2,
Dicorr=1[i=1Nb(AiμA)(BiμB)(Nb1)σAσB]2,
X=bbsa*(λ)*csa=Rrsa*((aw(λ)+as(λ))+bbw(λ))0.051*bbw(λ)0.051Rrsa.
Y=i=14bbsi*(λ)*csi=i=14Rrsi*((aw(λ)+as(λ))+bbw(λ))0.051*bbw(λ)0.051Rrsi*CsiCsa.
Y=aX+b,

Metrics