Abstract

The ability to see inside the body noninvasively is indispensable in modern biology and medicine. Optical approaches to such abilities are of rapidly growing interest because of their nonionizing nature and low cost. However, the problem of opacity due to the optical turbidity of tissues must be addressed before optical means become practical. Harmonic holography amalgamates the capability of holographic phase conjugation with the contrast-forming mechanism of second-harmonic generation, which provides a unique opportunity for imaging through a turbid medium. In this review we give accounts of the effort of imaging through turbid media using harmonic holographic phase conjugation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007).
    [CrossRef]
  2. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  3. C. Haisch, “Optical tomography,” Annu. Rev. Anal. Chem. 5, 57–77 (2012).
    [CrossRef]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [CrossRef]
  5. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
    [CrossRef]
  6. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
    [CrossRef]
  7. C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
    [CrossRef]
  8. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [CrossRef]
  9. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  10. S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
    [CrossRef]
  11. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [CrossRef]
  12. E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966).
    [CrossRef]
  13. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef]
  14. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
    [CrossRef]
  15. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
    [CrossRef]
  16. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).
  17. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
    [CrossRef]
  18. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002).
    [CrossRef]
  19. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
    [CrossRef]
  20. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
    [CrossRef]
  21. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
    [CrossRef]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  23. J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  24. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
    [CrossRef]
  25. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef]
  26. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
    [CrossRef]
  27. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
    [CrossRef]
  28. B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
    [CrossRef]
  29. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
    [CrossRef]
  30. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [CrossRef]
  31. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
    [CrossRef]
  32. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  33. B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
    [CrossRef]
  34. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
    [CrossRef]
  35. Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
    [CrossRef]
  36. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
    [CrossRef]
  37. X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
    [CrossRef]
  38. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
    [CrossRef]
  39. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).
    [CrossRef]
  40. P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
    [CrossRef]
  41. L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
    [CrossRef]
  42. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
    [CrossRef]
  43. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
    [CrossRef]
  44. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
    [CrossRef]
  45. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
    [CrossRef]
  46. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
    [CrossRef]
  47. S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
    [CrossRef]
  48. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
    [CrossRef]
  49. A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
    [CrossRef]
  50. I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
    [CrossRef]
  51. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
    [CrossRef]
  52. T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
    [CrossRef]
  53. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
    [CrossRef]
  54. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
    [CrossRef]
  55. L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
    [CrossRef]
  56. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
    [CrossRef]
  57. M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
    [CrossRef]
  58. T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
    [CrossRef]
  59. N. J. Long, “Organometallic compounds for nonlinear optics—The search for en-light-enment,” Angew. Chem.-Int. Edit. 34, 21–38 (1995).
    [CrossRef]
  60. I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.
  61. J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999).
    [CrossRef]
  62. S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” Chem. Soc. Rev. 30, 355–366 (2001).
    [CrossRef]
  63. B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Accounts Chem. Res. 39, 383–393 (2006).
    [CrossRef]
  64. M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
    [CrossRef]
  65. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [CrossRef]
  66. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
    [CrossRef]
  67. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
    [CrossRef]
  68. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
    [CrossRef]
  69. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
    [CrossRef]
  70. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
    [CrossRef]
  71. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
    [CrossRef]
  72. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
    [CrossRef]
  73. B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
    [CrossRef]
  74. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
    [CrossRef]
  75. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
    [CrossRef]
  76. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
    [CrossRef]
  77. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
    [CrossRef]
  78. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
    [CrossRef]
  79. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
    [CrossRef]
  80. M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009).
    [CrossRef]
  81. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
    [CrossRef]
  82. I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
    [CrossRef]
  83. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
    [CrossRef]
  84. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
    [CrossRef]
  85. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
    [CrossRef]
  86. M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
    [CrossRef]
  87. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
    [CrossRef]
  88. S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
    [CrossRef]
  89. K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
    [CrossRef]
  90. R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
    [CrossRef]
  91. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
    [CrossRef]
  92. R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
    [CrossRef]
  93. F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
    [CrossRef]
  94. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [CrossRef]
  95. Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
    [CrossRef]
  96. P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
    [CrossRef]
  97. E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
    [CrossRef]
  98. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
    [CrossRef]
  99. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
    [CrossRef]
  100. J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
    [CrossRef]
  101. R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
    [CrossRef]
  102. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
    [CrossRef]
  103. D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
    [CrossRef]
  104. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
    [CrossRef]
  105. M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
    [CrossRef]
  106. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
    [CrossRef]
  107. A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
    [CrossRef]
  108. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
    [CrossRef]
  109. A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
    [CrossRef]
  110. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
    [CrossRef]
  111. F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
    [CrossRef]
  112. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
    [CrossRef]
  113. Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.
  114. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
    [CrossRef]
  115. D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
    [CrossRef]
  116. E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).
  117. K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
    [CrossRef]
  118. K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
    [CrossRef]
  119. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [CrossRef]
  120. X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
    [CrossRef]

2012

C. Haisch, “Optical tomography,” Annu. Rev. Anal. Chem. 5, 57–77 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

2011

E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

2010

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
[CrossRef]

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

2009

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009).
[CrossRef]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
[CrossRef]

2008

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

2007

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

2006

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
[CrossRef]

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Accounts Chem. Res. 39, 383–393 (2006).
[CrossRef]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

2005

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

2004

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

2003

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
[CrossRef]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef]

2002

R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
[CrossRef]

2001

S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” Chem. Soc. Rev. 30, 355–366 (2001).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

2000

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[CrossRef]

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
[CrossRef]

1999

J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).
[CrossRef]

1998

F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
[CrossRef]

1997

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

1996

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

1995

N. J. Long, “Organometallic compounds for nonlinear optics—The search for en-light-enment,” Angew. Chem.-Int. Edit. 34, 21–38 (1995).
[CrossRef]

1994

J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

1991

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1989

Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
[CrossRef]

1988

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef]

1966

E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966).
[CrossRef]

1961

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

1958

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Adams, S. R.

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Alexandrakis, G.

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Ameloot, M.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Ando, R.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Arridge, S. R.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Asselberghs, I.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

Badie, L.

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Bai, B. F.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Bai, J.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Balas, C.

C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
[CrossRef]

Banin, U.

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
[CrossRef]

Baranov, A. V.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Barille, R.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Bartels, R. A.

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
[CrossRef]

Bassi, A.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Bautista, G.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

Benichou, E.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

Bertolotti, J.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Blanchard-Desce, M.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
[CrossRef]

Bloor, D.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Bocchio, N. L.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Bolisay, L.

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Bonacina, L.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Botek, E.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Boutou, V.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Bredas, J. L.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).

Brenner, D. J.

D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007).
[CrossRef]

Brevet, P. F.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

Brida, D.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Brito-Silva, A. M.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

Butet, J.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

Campagnola, P. J.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
[CrossRef]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Campbell, J. M.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Canfield, B. K.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

Cao, X.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Castillo, D.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

Centurion, M.

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[CrossRef]

Cerullo, G.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Champagne, B.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Chan, S. W.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Chan, W. K.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Chance, B.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Chandra, M.

M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009).
[CrossRef]

Chang, S. J.

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chang-Hasnain, C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Chauvat, D.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Chen, J.

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

Chen, R.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Chen, S. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Chen, Y. C.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Chen, Z.

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

Cheng, L. T.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Choe, R.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Choi, J. W.

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Chu, S. W.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Chuang, L. C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Ciepielewski, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Clarke, G.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Clays, K.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef]

Coe, B. J.

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Accounts Chem. Res. 39, 383–393 (2006).
[CrossRef]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Cole, J. M.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Corlu, A.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Courvoisier, F.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Crankshaw, S.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Cross, G. H.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Cubeddu, R.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Cui, M.

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[CrossRef]

Cuna, E.

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

D’Andrea, C.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Dadap, J. I.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Das, P. K.

M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009).
[CrossRef]

de Araujo, C. B.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

De Clercq, B.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

De Silvestri, S.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Decker, M.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

Denk, W.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
[CrossRef]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef]

Depeursinge, C.

E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).

Di Bella, S.

S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” Chem. Soc. Rev. 30, 355–366 (2001).
[CrossRef]

Diop-Frimpong, B.

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

Djanta, G.

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Djurisic, A. B.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Dombeck, D. A.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

Durduran, T.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Dutto, F.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

Edwards, P. S.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

Eisenthal, K. B.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Eliceiri, K. W.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Ellisman, M. H.

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

Extermann, J.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Fedorov, A. V.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef]

Feng, S. C.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

Ferrighi, L.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Feurer, T.

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Flors, C.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Forro, L.

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Franken, P. A.

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Fraser, S. E.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujita, Y.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Gacoin, T.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Galez, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Gambhir, S. S.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

Gao, Q.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Gao, X. H.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Geissbuehler, M.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Geissbuehler, S.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

Gerber-Lemaire, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Geren, K.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Gerrmann, M.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Ghijsen, M.

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Giepmans, B. N. G.

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Gillijns, W.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Goovaerts, E.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

Grange, R.

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Gulsen, G.

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Hadji, R.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Haisch, C.

C. Haisch, “Optical tomography,” Annu. Rev. Anal. Chem. 5, 57–77 (2012).
[CrossRef]

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

Hall, E. J.

D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Heinz, T. F.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef]

Hill, A. E.

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Hofkens, J.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Houbrechts, S.

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Howard, J. A. K.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Hoyer, W.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

Hsieh, C. L.

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.

Hsieh, C. S.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Hu, C. H.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Hu, J.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

Huang, J. Y.

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

Humphrey, M. G.

I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.

Huo, B. Z.

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

Hupp, J. T.

F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
[CrossRef]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Huttunen, M. J.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

Hyman, B. T.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

Inman, D. R.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Inoue, K.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Intes, X.

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

Ivanenko, V. I.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

Jacobsohn, M.

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
[CrossRef]

Jagadish, C.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Jain, R. K.

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

Jiang, J.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

Jonin, C.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

Joulaud, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Juillerat-Jeanneret, L.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Kane, C.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

Kasparian, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

Kauranen, M.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Keely, P. J.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

Khatchatouriants, A.

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

Knuttel, A.

J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

Ko, C. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Koch, S. W.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Kujala, S.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

Kumar, O.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Kwong, T. C.

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Lambert, Y.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Lanvin, T.

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

Laporte, G.

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

Lascoux, N.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

Lasser, T.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Le Dantec, R.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Le Xuan, L.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Lee, P. A.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

Leith, E. N.

E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966).
[CrossRef]

Lemon, B. I.

F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
[CrossRef]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Lesage, F.

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

Leung, Y. H.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Leutenegger, M.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

Li, H. F.

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lin, C. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Lin, J.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Lin, Y. T.

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Linden, S.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Lipovskii, A. A.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Liu, F.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Liu, J. J.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

Liu, S. W.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Liu, X.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Liu, Y.

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Liu, Z. W.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

Loew, L.

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Long, N. J.

N. J. Long, “Organometallic compounds for nonlinear optics—The search for en-light-enment,” Angew. Chem.-Int. Edit. 34, 21–38 (1995).
[CrossRef]

Magouroux, T.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Magrez, A.

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Malagoli, M.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Maloney, J.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

Marder, S. R.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Marki, I.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Marquet, P.

E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).

Marshal, F. F.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Masihzadeh, O.

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
[CrossRef]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef]

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

McDonagh, A. M.

I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.

Mertz, J.

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[CrossRef]

Meyers, F.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Miyawaki, A.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Mizuno, H.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

Moewe, M.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Mohler, W.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
[CrossRef]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Moloney, J. V.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

Moreaux, L.

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[CrossRef]

Moshchalkov, V. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

Mugnier, Y.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Munn, L. L.

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Nappa, J.

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

Nemet, B.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

Neogi, A.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Nguyen, K. T.

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Nie, S. M.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

Nieuwenhuizen, T. M.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Ntziachristos, V.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).

Nunzi, J. M.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Nuriya, M.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

Nyk, M.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Oron, D.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

Oyama, M.

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

Paiman, S.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Pantazis, P.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

Passemard, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Perruchas, S.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Persoons, A.

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef]

Peters, C. W.

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Petros, J. A.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Petrov, V. I.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

Plucinski, K. J.

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Provenzano, P. P.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Psaltis, D.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[CrossRef]

Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.

Pu, Y.

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[CrossRef]

Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Radenovic, A.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Radzewicz, C.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

Raillon, C.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

Reece, P. J.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Reshak, A. H.

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

Rikken, G.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Roch, J. F.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Rodriguez, E. V.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

Rosen, M. A.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef]

Rothman, Z.

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

Roy, I.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Russier-Antoine, I.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Rytz, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Samoc, M.

I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.

Sandre, O.

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[CrossRef]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Schenk, K.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

Schlup, P.

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

Schnall, M. D.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Schweiger, M.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Schwungi, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Senthilkumar, K.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Shaffer, E.

E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).

Shan, J.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Shcheslavskiy, V.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
[CrossRef]

Shi, K. B.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

Silhanek, A. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Simons, J. W.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Slablab, A.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Smajda, R.

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

Smisdom, N.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Smith, D. R.

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

Spangler, C. W.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Staedler, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Stiegman, A. E.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stone, A. D.

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

Stylianopoulos, T.

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

Sun, C. K.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Svirko, Y.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Szablewski, M.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Tam, K. H.

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

Tam, W.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

Tan, H. H.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Tard, C.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Theer, P.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
[CrossRef]

Thomas, P. R.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Thornton, A.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

Tian, R.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Toba, K.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Tran, T.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

Treinin, M.

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

Tromberg, B. J.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
[CrossRef]

Tsai, H. J.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

Tsien, R. Y.

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

Turunen, J.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

Uchiyama, S.

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Umar, A. A.

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

Upatniek, J.

E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966).
[CrossRef]

Urban, B. E.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Valentini, G.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

Valev, V. K.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

Van der Auweraer, M.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

van Putten, E. G.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

van Rossum, M. C. W.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Vance, F. W.

F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
[CrossRef]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

Venugopal, V.

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

Verbiest, T.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Villeval, P.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

Vos, W. L.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Wang, F.

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Wang, L. V.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wang, X.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Wang, X. H.

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

Wang, Y.

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

Wang, Y. M.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

Webb, W. W.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Wegener, M.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

Weinreich, G.

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Weiss, S.

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).
[CrossRef]

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).

R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002).
[CrossRef]

Wenseleers, W.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

White, J. G.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Whittall, I. R.

I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Winters, D. G.

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

Wnuk, P.

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

Wolf, J. P.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Wolff, J. J.

J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999).
[CrossRef]

Wortmann, R.

J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999).
[CrossRef]

Wu, D.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Xiao, M.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Xu, Q.

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

Yamanaka, A.

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Yang, C. H.

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[CrossRef]

Yang, L. L.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Yang, P. D.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Yang, X.

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

Ye, Z. Z.

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
[CrossRef]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Yuan, B. H.

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Yuste, R.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

Zeng, M.

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

Zeng, Y.

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

Zhang, B.

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Zhou, C.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

Zhou, H. J.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

Zhuang, X. W.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Zielinski, M.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Zoumi, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
[CrossRef]

Zyss, J.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

Accounts Chem. Res.

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Accounts Chem. Res. 39, 383–393 (2006).
[CrossRef]

ACS Nano

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012).
[CrossRef]

Adv. Phys. Org. Chem.

J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999).
[CrossRef]

Angew. Chem.-Int. Edit.

N. J. Long, “Organometallic compounds for nonlinear optics—The search for en-light-enment,” Angew. Chem.-Int. Edit. 34, 21–38 (1995).
[CrossRef]

Annu. Rev. Anal. Chem.

C. Haisch, “Optical tomography,” Annu. Rev. Anal. Chem. 5, 57–77 (2012).
[CrossRef]

Annu. Rev. Phys. Chem.

Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
[CrossRef]

Appl. Opt.

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).
[CrossRef]

Appl. Phys. B

S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
[CrossRef]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Appl. Phys. Lett.

R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009).
[CrossRef]

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010).
[CrossRef]

B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012).
[CrossRef]

Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012).
[CrossRef]

Biomaterials

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010).
[CrossRef]

Biomed. Opt. Express

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011).
[CrossRef]

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012).
[CrossRef]

K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012).
[CrossRef]

Biophys. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000).
[CrossRef]

T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010).
[CrossRef]

BMC Med.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[CrossRef]

Chem. Phys.

M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009).
[CrossRef]

Chem. Phys. Lett.

E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009).
[CrossRef]

Chem. Soc. Rev.

S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” Chem. Soc. Rev. 30, 355–366 (2001).
[CrossRef]

Curr. Opin. Biotechnol.

X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005).
[CrossRef]

Eur. Radiol.

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).

Genes Dev.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Am. Chem. Soc.

I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008).
[CrossRef]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997).
[CrossRef]

J. Appl. Phys.

K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009).
[CrossRef]

J. Biomed. Opt.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef]

J. Chem. Phys.

I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004).
[CrossRef]

J. Cryst. Growth

Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012).
[CrossRef]

J. Mater. Chem.

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

J. Mater. Sci.: Mater. Electron.

A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012).
[CrossRef]

J. Neurosci.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004).
[CrossRef]

J. Opt. Soc. Am.

E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966).
[CrossRef]

J. Opt. Soc. Am. A

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006).
[CrossRef]

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
[CrossRef]

J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

J. Opt. Soc. Am. B

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012).
[CrossRef]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008).
[CrossRef]

J. Phys. Chem.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991).
[CrossRef]

J. Phys. Chem. B

F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
[CrossRef]

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
[CrossRef]

J. Phys. Chem. C

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007).
[CrossRef]

R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011).
[CrossRef]

Meas. Sci. Technol.

C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
[CrossRef]

Med. Phys.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[CrossRef]

Methods

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003).
[CrossRef]

N. Engl. J. Med.

D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007).
[CrossRef]

Nano Lett.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012).
[CrossRef]

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011).
[CrossRef]

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011).
[CrossRef]

F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011).
[CrossRef]

Nat. Biotechnol.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef]

Nat. Methods

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef]

Nat. Photonics

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

Nat. Rev. Cancer

R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002).
[CrossRef]

Nature

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Opt. Express

P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009).
[CrossRef]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[CrossRef]

J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef]

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef]

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008).
[CrossRef]

Opt. Lett.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010).
[CrossRef]

V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

Opt. Mater. Express

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011).
[CrossRef]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011).
[CrossRef]

Phys. Rev.

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Phys. Rev. B

Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009).
[CrossRef]

A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996).
[CrossRef]

Phys. Rev. Lett.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef]

P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
[CrossRef]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
[CrossRef]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).
[CrossRef]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006).
[CrossRef]

Proc. SPIE

E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).

Rev. Mod. Phys.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Science

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef]

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006).
[CrossRef]

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).
[CrossRef]

Small

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef]

Other

Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.

I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Problem of imaging through turbid media. (a) Light wave from a light source (red star) propagates through a disordered scattering medium of thickness L and undergoes multiple scattering events that destroy its spatial coherence before reaching the imaging lens. (b) In the absence of the scattering medium, the light from the source focuses as a converging spherical wave (dashed arcs), forming an image (black dashed star) as shown. (c) Due to the scattering in the turbid medium, which decimates the direct transmitted wave (the ballistic photons), and the highly distorted wave (red wavy curves) emerging from the turbid medium does not form an image but rather spreads into a speckle field, as shown. At question is how to retrieve an image of the source S from the speckle.

Fig. 2.
Fig. 2.

Principle of SHG. (a) Energy diagram for SHG. Two input photons are annihilated and one output photon of doubled frequency is produced simultaneously. The energy of the input photon pair is less than the lowest bandgap (S1). The bond electrons undergo only a brief (a few femtoseconds) virtual transition before they emit a single photon with exactly doubled frequency and transit back to the ground state (S0). Energy is conserved throughout the process. (b) Symmetry selectivity in the SHG process. When illuminated by an intense light beam, the polarization response of materials with different symmetry deviates from the input (fundamental) differently. An asymmetric system (blue triangle) produces an asymmetric deviation (blue solid curve), leading to SHG radiation and possibly higher even-order harmonics. A symmetric system (red circle) produces a symmetric deviation (red solid curve) where all even-order harmonics cancels out, permitting only odd-order harmonics. The dark red dotted curves indicate linear polarization response.

Fig. 3.
Fig. 3.

Enhancement of SHG in a resonating plasmonic core-shell nanocavity. (a) Principle of the SHG enhancement. In a plasmonic nanocavity encaging an SHG nanocrystal, resonantly driven by an external optical field E0 at the fundamental frequency ω, the internal electric field is enhanced, leading to significantly stronger SHG radiation. (b) Experimental measurements for the SHG scattering cross section (in unit of GM) of a bare core particle (red circles), an on-resonance nanocavity (blue up triangles), and an off-resonance nanocavity (blue down triangles). All measurements are a function of the fundamental polarization angle. The resonant SHG enhancement factor of the nanocavity over a bare core particle is greater than 500. Adapted from [112].

Fig. 4.
Fig. 4.

Principle of H2. (a) In a conventional holography, the objects (represented by a cube, a cone, and a sphere) scatter at the same frequency with the illumination and the reference light (marked in green). The image sensor records the fringes formed by the interference between the scattered light from the object and the reference light. Through numerical reconstruction, a 3D image of all objects (represented in black solid shape outlines) is retrieved. (b) In H2, the object of interest (the sphere as an example) is tagged with nonlinear optical material that is capable of generating optical harmonics (for example SHG). When excited by the illumination light (marked in red), only the sphere scatters light at the doubled frequency that can pass the bandpass filter F. The linearly scattered waves (not shown for clarity) at the same frequency with the illumination light are rejected by the filter. The reference wave goes through an independent nonlinear optical crystal for frequency conversion before reaching the image sensor. The image sensor therefore records a hologram that only contains the wave from the sphere. The numerical reconstruction is able to retrieve only the sphere (black solid shape) but reject the cube and the cone (gray dashed shapes). kI, kO, and kR: the wave vectors of the illumination, object, and reference waves, respectively. BS, beam splitter.

Fig. 5.
Fig. 5.

3D imaging in cells with H2. (a) Experimental setup for 3D imaging of SHRIMPs in cells using H2. (b) Simultaneous transmission microscopy of a HeLa cell (red channel) and SHG images of six SHRIMP clusters (green channel) adsorbed on its membrane. SHRIMPs found in the viewing field are labeled 1–6. Note that not all SHRIMPs are in focus due to their 3D distribution. (c)–(e) numerically reconstructed images at selected planes from an image stack. The distance between the adjacent planes is approximately 3 μm. The white arrows indicate the on-focus images of SHRIMPs, while the gray arrows indicate the out-of-focus images of SHRIMPs. (f) Normalized axial intensity profiles of the six clusters. The scale bar is 5 μm. (b)–(f) reproduced from [98].

Fig. 6.
Fig. 6.

Principle of imaging through turbid media with harmonic holographic phase conjugation. (a) To achieve focusing through the turbid medium, a SHRIMP (blue filled solid circle) is used as a light beacon and radiates frequency-doubled light under the excitation of an intense short laser pulse. The optical field EO (blue solid curve to the left of the medium) generated by the SHRIMP undergoes multiple scattering while transmitting through the scattering medium and becomes the scattered field ES (blue solid curve to the right of the medium). Through harmonic holographic phase conjugation, the conjugated wavefront ES* in the doubled frequency is reestablished. After transmitting back through the original scattering medium, all scattering distortions are canceled and the conjugated wavefront EO* (blue dashed curve to the right of the medium) is reconstructed, which forms a focus at the original position of the SHRIMP. (b) Lateral scanning can be achieved through the transverse memory effect in the disordered medium. When the phase-conjugated wave field (blue dashed curve) is rotated by an angle before being sent back through the original medium, the focus (blue open solid circle) is transversely displaced by Δx from the original SHRIMP position (blue open dashed circle) albeit with a lower intensity. This enables the scanning in the transverse dimension by a controlled rotation angle. (c) Axial scanning can be achieved through the axial memory effect in the disordered medium. When the phase-conjugated wave field (blue dashed curve) is bent by a curvature before being sent back through the original medium, the focus (blue open solid circle) is axially displaced by Δz from the original SHRIMP position (blue open dashed circle) with a lower intensity. This enables the scanning in the axial dimension by a controlled curvature.

Fig. 7.
Fig. 7.

Experiments of phase conjugation and imaging through turbid media using H2. (a) Experimental setup for H2 recording of the scattered light field. The sample S contains isolated SHRIMPs behind (from the view of CCD2) a turbid layer. The digital camera CCD2 records the holograms formed by the scattered SHG light field and the second harmonic reference generated independently by a BBO. Parts outlined in gray are not involved in the recording process. (b) Digital phase conjugation. The second harmonic reference is directed to the SLM where the conjugated wavefront is recreated, goes through the same turbid layer, and focuses onto CCD1. Parts outlined in gray are not involved in the phase conjugation process. λ/2, half-wave plate; BBO, beta-barium borate; PBS, polarization beam splitter; M, mirror; D, dichroic mirror; L1–L4, lens; OBJ1 and OBJ2, microscope objectives; S, sample; BS1–BS3, beam splitters; F1 and F2, SHG bandpass filter. (c) Conjugated phase pattern of the scattered SHG field extracted from the hologram and projected onto the SLM. (d) Normalized intensity image of the highly distorted focus without phase conjugation. (e) Normalized intensity image (captured by CCD1) of the phase-conjugated focus through the turbid medium by using the phase pattern shown in (a). The scale bar is 5 μm in (d) and (e). (f) Comparison of the phase-conjugated focus with the diffraction limit. Red: normalized intensity profile of the phase-conjugated focus. Black: normalized intensity profile of the diffraction limited focus. The FWHMs of the phase-conjugated and diffraction limit are 2.30 and 1.95 μm, respectively. (g) Wide-field transmission image of the scanning target, a 130 nm thick gold pattern on a glass substrate prepared by photolithography. The bright region indicates the transparent area. (h) Phase-conjugate scanning image of the target. The target pattern is clearly resolved. The scale bar is 25 μm in (g) and (h). (i) Sample used in the experiment of 3D laser-scanning fluorescence imaging through turbid media. Fluorescent beads (2–5 μm) are randomly deposited on both sides of a cover slip as the imaging targets. Sparse SHRIMPs are dispersed on one side of the cover slip as beacons. The 3D imaging is achieved by scanning the phase conjugation focus in the vicinity volume and collecting the fluorescence signal. (j) and (k) Direct (without the turbid layers) wide-field microscopy and the phase-conjugated scanning image (through the turbid layers) on side 1, respectively. (l) and (m) Direct wide-field microscopy and the phase-conjugated scanning image on side 2, respectively. The scale bar is 10 μm in (j)–(m). (c)–(f) reproduced from [15], (g) and (h) reproduced from [119], (j)–(m) reproduced from [120].

Metrics