X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

A. D. Klose, “The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 111, 1852–1853 (2010).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

D. Gorpas, D. Yova, and K. Politopoulos, “A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 111, 553–568 (2010).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

Z. Yuan, X.-H. Hu, and H. Jiang, “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54, 65–88 (2009).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, “Flux vector formulation for photon propagation in the biological tissue,” Opt. Lett. 32, 2837–2839 (2007).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

J. H. Lee, S. Kim, and Y. T. Kim, “Modeling of diffuse-diffuse photon coupling via a nonscattering region: a comparative study,” Appl. Opt. 43, 3640–3655 (2004).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

H. Dehghani and D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A. 19, 1162–1171 (2002).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. 2. modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. 2. modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, “Flux vector formulation for photon propagation in the biological tissue,” Opt. Lett. 32, 2837–2839 (2007).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

H. Dehghani and D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A. 19, 1162–1171 (2002).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).

[CrossRef]

H. Dehghani and D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A. 19, 1162–1171 (2002).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

D. Gorpas, D. Yova, and K. Politopoulos, “A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 111, 553–568 (2010).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. 2. modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

Z. Yuan, X.-H. Hu, and H. Jiang, “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54, 65–88 (2009).

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Z. Yuan, X.-H. Hu, and H. Jiang, “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54, 65–88 (2009).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

A. D. Klose, “The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 111, 1852–1853 (2010).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, “Flux vector formulation for photon propagation in the biological tissue,” Opt. Lett. 32, 2837–2839 (2007).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).

[CrossRef]

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).

[CrossRef]

T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888–2896 (2003).

[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

D. Gorpas, D. Yova, and K. Politopoulos, “A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 111, 553–568 (2010).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, “Flux vector formulation for photon propagation in the biological tissue,” Opt. Lett. 32, 2837–2839 (2007).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

L. V. Wang and H.-I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

L. V. Wang and H.-I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

D. Gorpas, D. Yova, and K. Politopoulos, “A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 111, 553–568 (2010).

[CrossRef]

Z. Yuan, X.-H. Hu, and H. Jiang, “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54, 65–88 (2009).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11, 1029–1038 (2004).

[CrossRef]

J. H. Lee, S. Kim, and Y. T. Kim, “Modeling of diffuse-diffuse photon coupling via a nonscattering region: a comparative study,” Appl. Opt. 43, 3640–3655 (2004).

[CrossRef]

T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888–2896 (2003).

[CrossRef]

K. Peng, X. Gao, X. Qu, N. Ren, X. Chen, X. He, X. Wang, J. Liang, and J. Tian, “Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues,” Appl. Opt. 50, 3808–3823 (2011).

[CrossRef]

X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Meth. Eng. 65, 383–405 (2006).

[CrossRef]

X. Chen, D. Yang, X. Qu, H. Hu, J. Liang, X. Gao, and J. Tian, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A. 17, 1671–1681 (2000).

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A. 17, 1659–1670 (2000).

[CrossRef]

H. Dehghani and D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A. 19, 1162–1171 (2002).

[CrossRef]

D. Gorpas, D. Yova, and K. Politopoulos, “A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 111, 553–568 (2010).

[CrossRef]

A. D. Klose, “The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 111, 1852–1853 (2010).

[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

[CrossRef]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18, 20988–21002 (2010).

[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000).

[CrossRef]

Y. Ogoshi and E. Okada, “Analysis of light propagation in a realistic head model by a hybrid method for optical brain function measurement,” Opt. Rev. 12, 264–269 (2005).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783(1996).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50, 4913–4930 (2005).

[CrossRef]

Z. Yuan, X.-H. Hu, and H. Jiang, “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54, 65–88 (2009).

[CrossRef]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).

[CrossRef]

Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation,” Phys. Med. Biol. 54, 6477–6493 (2009).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. 2. modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

X. Chen, J. Liang, J. Liu, H. Hu, X. Qu, F. Wang, and Y. Nie, “Multi-modality molecular imaging for gastric cancer detection,” Proc. SPIE 8311, 831115 (2011).

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

L. V. Wang and H.-I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).