Abstract

By decomposing a linearly polarized light field in terms of plane waves, the elliptic intensity distribution across the focal spot is shown to be determined by the E-vector’s longitudinal component. Considering that the Poynting vector’s projection onto the optical axis (power flux) is independent of the E-vector’s longitudinal component, the power flux cross section has a circular form. Using a near-field scanning optical microscope (NSOM) with a small-aperture metal tip, we show that a glass zone plate (ZP) having a focal length of one wavelength focuses a linearly polarized Gaussian beam into a weak ellipse with the Cartesian axis diameters FWHMx=(0.44±0.02)λ and FWHMy=(0.52±0.02)λ and the (depth of focus) DOF=(0.75±0.02)λ, where λ is the incident wavelength. The comparison of the experimental and simulation results suggests that NSOM with a hollow pyramidal aluminum-coated tip (with 70° apex and 100 nm diameter aperture) measures the transverse intensity, rather than the power flux or the total intensity. The conclusion that the small-aperture metal tip measures the transverse intensity can be inferred from the Bethe–Bouwkamp theory.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
    [CrossRef]
  2. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y.-G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36, 4497–4499 (2011).
    [CrossRef]
  3. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19, 9434–9444 (2011).
    [CrossRef]
  4. Y. Liu, H. Xu, F. Stief, N. Zhitenev, and M. Yu, “Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits,” Opt. Express 19, 20233–20243 (2011).
    [CrossRef]
  5. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
    [CrossRef]
  6. R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
    [CrossRef]
  7. S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).
  8. J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
    [CrossRef]
  9. K. Huang and Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36, 3536–3538 (2011).
    [CrossRef]
  10. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
    [CrossRef]
  11. X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0  Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011).
    [CrossRef]
  12. J. Lin, K. Yin, Y. Li, and J. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36, 1185–1187 (2011).
    [CrossRef]
  13. H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011).
    [CrossRef]
  14. V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Am. B 27, 1991–1997(2010).
    [CrossRef]
  15. J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Plain intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37, 1274–1276 (2012).
    [CrossRef]
  16. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
    [CrossRef]
  17. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
    [CrossRef]
  18. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef]
  19. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
    [CrossRef]
  20. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005).
    [CrossRef]
  21. Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
    [CrossRef]
  22. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE .
  23. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).
  24. K. A. Michalski, “Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen,” Prog. Electromagn. Res. 27, 253–272 (2011).
    [CrossRef]
  25. J. H. Wu, “Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film,” Opt. Lett. 36, 3440–3442 (2011).
    [CrossRef]

2012 (3)

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Plain intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37, 1274–1276 (2012).
[CrossRef]

2011 (14)

K. A. Michalski, “Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen,” Prog. Electromagn. Res. 27, 253–272 (2011).
[CrossRef]

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).

J. Lin, K. Yin, Y. Li, and J. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36, 1185–1187 (2011).
[CrossRef]

Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19, 9434–9444 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011).
[CrossRef]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0  Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011).
[CrossRef]

V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
[CrossRef]

J. H. Wu, “Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film,” Opt. Lett. 36, 3440–3442 (2011).
[CrossRef]

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

K. Huang and Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36, 3536–3538 (2011).
[CrossRef]

Y. Liu, H. Xu, F. Stief, N. Zhitenev, and M. Yu, “Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits,” Opt. Express 19, 20233–20243 (2011).
[CrossRef]

K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y.-G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36, 4497–4499 (2011).
[CrossRef]

2010 (1)

2009 (1)

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

2005 (3)

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Accardo, A.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Bijeon, J.-L.

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Candeloro, P.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Cao, Y.

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Chen, K. R.

Chu, W. H.

Chuang, C. H.

Chui, H. C.

Cingolani, R.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Cojoc, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Coluccio, M. L.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Cuda, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Das, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

De Angelis, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Di Fabrizio, E.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Du, C.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

Fang, H. C.

Fu, Y.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

Fuh, A. Y.-G.

Gan, X.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005).
[CrossRef]

Gentile, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Gérard, D.

Gu, M.

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0  Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011).
[CrossRef]

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

Huang, C. H.

Huang, K.

Hwung, H. H.

Jia, B.

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011).
[CrossRef]

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Kotlyar, V. V.

Kumar, A.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Li, J.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

Li, X.

Li, X. F.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Li, Y.

Liberale, C.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Lin, C. Y.

Lin, H.

Lin, J.

Lin, Z.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Liu, C. P.

Liu, Y.

Lo, Y. L.

Martin, J.

Mecarini, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Mei, G.-A.

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

Michalski, K. A.

K. A. Michalski, “Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen,” Prog. Electromagn. Res. 27, 253–272 (2011).
[CrossRef]

Moretti, M.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Mote, R. G.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

O’Faolain, L.

S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).

V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
[CrossRef]

Perozziello, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Pikus, Y.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Plain, J.

Proust, J.

Rogers, E. T. F.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Roy, T.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Savo, S.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Shanina, M. I.

S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).

Shi, H.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

Soifer, V. A.

S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).

V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
[CrossRef]

Srituravanch, W.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Stafeev, S. S.

Steele, J. M.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Stief, F.

Sun, C.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Tan, J.

Tirinato, L.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Toma, A.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Wei, S. B.

Wu, J. H.

Xu, H.

Ye, J.-S.

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

Yin, K.

Yu, M.

Yu, S. F.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Yu, Y.

Yuan, G. H.

Yuan, X.-C.

Zaccaria, R. P.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Zappe, H.

Zhang, X.

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Zhang, Y.

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

Zheludev, N. I.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Zheng, X.-H.

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

Zhitenev, N.

Zhou, W.

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Appl. Phys. B (1)

R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009).
[CrossRef]

Comput. Opt. (1)

S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).

J. Mod. Opt. (1)

J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Nat. Mater. (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Nat. Photonics (1)

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (9)

K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y.-G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36, 4497–4499 (2011).
[CrossRef]

J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Plain intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37, 1274–1276 (2012).
[CrossRef]

J. Lin, K. Yin, Y. Li, and J. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36, 1185–1187 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011).
[CrossRef]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0  Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011).
[CrossRef]

V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
[CrossRef]

J. H. Wu, “Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film,” Opt. Lett. 36, 3440–3442 (2011).
[CrossRef]

G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011).
[CrossRef]

K. Huang and Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36, 3536–3538 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Prog. Electromagn. Res. (1)

K. A. Michalski, “Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen,” Prog. Electromagn. Res. 27, 253–272 (2011).
[CrossRef]

Other (2)

http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE .

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Patterns of (a) the intensity and (b) the power flux for the Bessel beam at α=0.3.

Fig. 2.
Fig. 2.

Patterns of (a) the intensity and (b) the power flux for the Bessel beam at α=0.8.

Fig. 3.
Fig. 3.

Patterns of (a) the intensity and (b) the power flux for the Bessel beam at α=0.9.

Fig. 4.
Fig. 4.

Contour map of the binary microaxicon of period T=λ in the calculated field (the rings have n=1.52, while the background has n=1).

Fig. 5.
Fig. 5.

Patterns of the near-surface (a) intensity and (b) the power flux generated at distance λ/20 using a binary microaxicon of period T=λ.

Fig. 6.
Fig. 6.

(a) Template of a ZP with a one-wavelength focal length, f=λ and (b) the intensity pattern in the focal plane. The polarization is along the y-axis.

Fig. 7.
Fig. 7.

Patterns of (a) the intensity and (b) the power flux in the focal plane for the space step Δr=λ/50. The profiles are mapped along the x-axis (φ=0) and y-axis (φ=π/2).

Fig. 8.
Fig. 8.

Comparison of the ZP-aided intensity profiles along the optical axis produced by the BOR-FDTD Matlab simulation (curve 1) and FDTD-based FullWAVE simulation (curve 2).

Fig. 9.
Fig. 9.

AFM images of the ZP under study: (a) side view and (b) top view.

Fig. 10.
Fig. 10.

(a) NSOM-aided experimental setup and (b) arrangement.

Fig. 11.
Fig. 11.

(a) Experimental intensity profile on the optical axis from the ZP in Fig. 9 (blue crossline markings; the left axis) and the focal spot smaller sizes (green vertical segments; the right axis) and (b) the focal spot cross section at the focal length f=λ=532nm (the vertical axis is in the polarization plane).

Fig. 12.
Fig. 12.

Comparison of the experimental and calculated distribution in the focal spot on the x-axis: calculated intensity profile (curve 1), experimental intensity profile (curve 2), and the calculated distribution of the Poynting vector’s absolute value onto the z-axis (curve 3).

Fig. 13.
Fig. 13.

Comparison of the experimental and calculated distribution in the focal spot on the y-axis, which is parallel to the polarization plane: calculated distribution of Poynting’s vector absolute value onto the z-axis (curve 3), the experimental intensity distribution (curve 2), and the calculated intensity distribution (curve 1) taken as a superposition of (a) all components and (b) only transverse components.

Fig. 14.
Fig. 14.

Electronic image of the hollow pyramid-shaped metal cantilever tip with a 100 nm aperture and 70° tip apex of the NSOM.

Tables (1)

Tables Icon

Table 1. Focal Spot Size

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

{Ex(r,φ,0)Ex(r),Ey(r,φ,0)0,Ez(r,φ,0)0,
I=|E|2=|Ex|2+|Ey|2+|Ez|2,
Sz=12Re{(E×H*)z}=12Re{ExHy*EyHx*}.
I=|Ex|2+|Ez|2,
Sz=12Re{ExHy*}.
rotE=iωμ0μH,
Sz=Re{i2ωμ0μEx(Ex*zEz*u)}.
Ex(u,v,z)=R2A(α,β)exp{ik[αu+βv+z1α2β2]}dαdβ,
Exu+Eyv+Ezz=0,
Ez(u,v,z)=R2α1α2β2A(α,β)exp{ik[αu+βv+z1α2β2]}dαdβ+C(u,v).
Ex*zEz*u=ikR21β21α2β2A*(α,β)exp{ik[αu+βv+z1α2β2]}dαdβ.
Ex(ρ,θ,z)=2π0A(ζ)exp(ikz1ζ2)J0(kρζ)ζdζ,
Ez(ρ,θ,z)=2πicosθ0A(ζ)exp(ikz1ζ2)J1(kρζ)ζ2dζ1ζ2,
Ex*zEz*u=2πik0A*(ζ)exp(ikz1ζ2)×[(1ζ22)J0(kρζ)ζ22J2(kρζ)cos(2θ)]ζdζ1ζ2.
I=4π2|0A(ζ)exp(ikz1ζ2)J0(kρζ)ζdζ|2+4π2cos2θ|0A(ζ)exp(ikz1ζ2)J1(kρζ)ζ2dζ1ζ2|2,
Sz=2π2kωμ0μRe({0A(ζ)exp(ikz1ζ2)J0(kρζ)ζdζ}{0A*(ζ)exp(ikz1ζ2)[(1ζ22)J0(kρζ)ζ22J2(kρζ)cos(2θ)]ζdζ1ζ2}).
A(ζ)=δ(ζα),
I=[2παJ0(kαρ)]2+[2πα21α2J1(kαρ)cosθ]2,
Sz=2π2kωμ0μJ0(kαρ)[(1α22)J0(kαρ)α22J2(kαρ)cos(2θ)]α21α2.
P=43ε0a3(Enz)nz,M=83a3[nz×[E×nz]],

Metrics