Abstract

In this paper we propose an approach for handling noise in deconvolution algorithm based on multidirectional filters. Most image deconvolution techniques are sensitive to the noise. Even a small amount of noise will degrade the quality of image estimation dramatically. We found that by applying a directional low-pass filter to the blurred image, we can reduce the noise level while preserving the blur information in the orthogonal direction to the filter. So we apply a series of directional filters at different orientations to the blurred image, and a guided filter based edge-preserving image deconvolution is used to estimate an accurate Radon transform of the clear image from each filtered image. Finally, we reconstruct the original image using the inverse Radon transform. We compare our deconvolution algorithm with many competitive deconvolution techniques in terms of the improvement in signal-to-noise ratio and visual quality.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
A computational method for the restoration of images with an unknown, spatially-varying blur

Johnathan Bardsley, Stuart Jefferies, James Nagy, and Robert Plemmons
Opt. Express 14(5) 1767-1782 (2006)

Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images

Vadim Loyev and Yitzhak Yitzhaky
Appl. Opt. 45(11) 2444-2452 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription