Abstract

This paper reports a theoretical and experimental study for thermal transport in a thin slice of human tooth induced by a 120 fs, 800 nm pulse laser at a repetition rate of 1 kHz. The surface reflectivity of enamel and the convection heat transfer coefficient were determined using an inverse heat transfer analysis. Instead of a fully three-dimensional modeling, two simplified two-dimensional (2D) planar and axisymmetric heat conduction models were proposed to simulate the temperature fields. The temperature responses obtained from the 2D planar and axisymmetric model agree well with the experimental measurements. On the other hand, the one-dimensional (1D) result significantly differs from the 2D axisymmetric one, suggesting that care should be taken when a 1D thermal model is considered for estimating temperature response.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Parker, “Surgical lasers and hard dental tissue,” British Dent. J. 202, 445–454 (2007).
    [CrossRef]
  2. http://www.webmd.com/oral-health/guide/laser-usedentistry .
  3. http://www.ada.org/1860.aspx .
  4. M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).
  5. P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.
  6. M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
    [CrossRef]
  7. P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
    [CrossRef]
  8. A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
    [CrossRef]
  9. H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010).
    [CrossRef]
  10. L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
    [CrossRef]
  11. I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).
  12. F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
    [CrossRef]
  13. S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Dekker, 2003), pp. 359–394.
  14. W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
    [CrossRef]
  15. M. Niemz, Laser Tissue Interactions: Fundamentals and Application (Springer-Verlag, 2002), pp. 181–182.
  16. J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
    [CrossRef]
  17. P. Pavlina, P. Christian, S. Robert, and L. Peter, “Temperature distribution in dental tissue after interaction with femtosecond laser pulses,” Appl. Opt. 46, 8374–8378 (2007).
    [CrossRef]
  18. M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
    [CrossRef]
  19. M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
    [CrossRef]
  20. R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
    [CrossRef]
  21. P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
    [CrossRef]
  22. Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).
  23. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot size,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef]
  24. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  25. J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003).
    [CrossRef]
  26. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
    [CrossRef]
  27. M. N. Ozisik, Heat Conduction (Wiley, 1993).
  28. J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).
  29. American National Standard, “Standard method of test for thermal conductivity of materials by means of guarded hot plate,” ASTM Committee C16, designation (October1971), pp. 15–28.
  30. J. H. Blackwell, “A transient-flow method for determination of thermal constants of insulating materials in bulk,” J. Appl. Phys. 25, 137–145 (1954).
    [CrossRef]
  31. C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991).
    [CrossRef]
  32. C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995).
    [CrossRef]
  33. C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007).
    [CrossRef]
  34. T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
    [CrossRef]
  35. B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009).
    [CrossRef]
  36. C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002).
    [CrossRef]

2012 (2)

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

2010 (1)

H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010).
[CrossRef]

2009 (1)

B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009).
[CrossRef]

2008 (5)

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
[CrossRef]

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
[CrossRef]

2007 (3)

S. Parker, “Surgical lasers and hard dental tissue,” British Dent. J. 202, 445–454 (2007).
[CrossRef]

P. Pavlina, P. Christian, S. Robert, and L. Peter, “Temperature distribution in dental tissue after interaction with femtosecond laser pulses,” Appl. Opt. 46, 8374–8378 (2007).
[CrossRef]

C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007).
[CrossRef]

2006 (1)

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

2005 (2)

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

2004 (1)

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

2003 (3)

J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003).
[CrossRef]

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
[CrossRef]

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

2002 (1)

C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002).
[CrossRef]

1997 (1)

P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
[CrossRef]

1995 (2)

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995).
[CrossRef]

1993 (1)

M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).

1991 (1)

C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991).
[CrossRef]

1982 (1)

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

1954 (1)

J. H. Blackwell, “A transient-flow method for determination of thermal constants of insulating materials in bulk,” J. Appl. Phys. 25, 137–145 (1954).
[CrossRef]

Akihiro, T.

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

Al-Janabi, A. H.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Ana, P. A.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Audet, C.

C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002).
[CrossRef]

Azinovic, A.

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

Azinovic, Z.

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

Bäcker, A.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Beck, J. V.

J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003).
[CrossRef]

Blackwell, B.

J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).

Blackwell, J. H.

J. H. Blackwell, “A transient-flow method for determination of thermal constants of insulating materials in bulk,” J. Appl. Phys. 25, 137–145 (1954).
[CrossRef]

Borzillary, S. F.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

Bukovic, D.

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

Chen, J. K.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
[CrossRef]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003).
[CrossRef]

Chen, J. R.

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Christian, P.

Clair, C. R. St.

J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).

Czel, B.

B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009).
[CrossRef]

Dennis, J. E.

C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002).
[CrossRef]

Devlin, H.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Eisenmann, L.

M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).

Fahey, M.

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

Featherstone, J. D.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

Fried, D.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

Gamaly, E. G.

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Grof, G.

B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009).
[CrossRef]

Guo, Z.

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

Guo, Z. X.

H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010).
[CrossRef]

Huang, C. H.

C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007).
[CrossRef]

C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995).
[CrossRef]

C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991).
[CrossRef]

Huang, C. Y.

C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007).
[CrossRef]

Huang, H.

H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010).
[CrossRef]

Jaunich, M. K.

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

Ji, L.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Jiang, T.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Jiao, J.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Kan, N.

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Kasenbacher, A.

P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.

Keiji, F.

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Keros, J.

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

Kim, K.

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

Kohns, P.

P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
[CrossRef]

Kolda, T. G.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
[CrossRef]

Kolev, V. Z.

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Kopecek, H.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Lewis, R. M.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
[CrossRef]

Li, L.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Li, R.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Liang, S.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Liu, J. M.

Liu, Z.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Luther-Davies, B.

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Ma, X.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Madsen, N. R.

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Masayo, M.

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Mason, H. L.

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

Mitra, K.

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

Niemz, M.

M. Niemz, Laser Tissue Interactions: Fundamentals and Application (Springer-Verlag, 2002), pp. 181–182.

Niemz, M. H.

M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).

Nolte, S.

S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Dekker, 2003), pp. 359–394.

Onyejekwe, O.

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

Ozisik, M. N.

C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991).
[CrossRef]

M. N. Ozisik, Heat Conduction (Wiley, 1993).

Parker, S.

S. Parker, “Surgical lasers and hard dental tissue,” British Dent. J. 202, 445–454 (2007).
[CrossRef]

Pavlina, P.

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Peter, L.

Pioch, T.

M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).

Raje, S.

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

Robert, S.

Rode, A. V.

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Sa, Y.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Seka, W.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

Störmann, R.

P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
[CrossRef]

Straßl, M.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Takanori, K.

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Tetsuo, I.

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Torczon, V.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
[CrossRef]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

Velloso, W. F.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
[CrossRef]

Wang, Y.

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

Weigl, P.

P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.

Weinrotter, M.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Werelius, K.

P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.

Whitehead, D.

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Wieger, V.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Wintner, E.

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

Yan, J. Y.

C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995).
[CrossRef]

Yoshio, H.

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Zezell, D. M.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
[CrossRef]

Zhang, Y.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
[CrossRef]

Zhou, J.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
[CrossRef]

Zhou, P.

P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
[CrossRef]

Appl. Math. Model. (1)

C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005).
[CrossRef]

British Dent. J. (1)

S. Parker, “Surgical lasers and hard dental tissue,” British Dent. J. 202, 445–454 (2007).
[CrossRef]

Coll. Antropol. (1)

Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).

Dent. Mater. J. (1)

I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).

Int. J. Heat Mass Transfer (4)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005).
[CrossRef]

M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008).
[CrossRef]

M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008).
[CrossRef]

C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995).
[CrossRef]

Int. J. Thermophys. (1)

B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009).
[CrossRef]

J. Appl. Phys. (1)

J. H. Blackwell, “A transient-flow method for determination of thermal constants of insulating materials in bulk,” J. Appl. Phys. 25, 137–145 (1954).
[CrossRef]

J. Dent. (1)

R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012).
[CrossRef]

J. Dent. Res. (1)

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995).
[CrossRef]

J. Laser Appl. (1)

P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008).
[CrossRef]

Lasers Med. Sci. (2)

H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010).
[CrossRef]

L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012).
[CrossRef]

Monatsschr. Zahnmed (1)

M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).

Numer. Heat Transfer A (1)

J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003).
[CrossRef]

Numer. Heat Transfer, Part A (1)

C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008).
[CrossRef]

SIAM J. Optim. (1)

C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002).
[CrossRef]

SIAM Rev. (1)

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003).
[CrossRef]

Sov. Phys. JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Other (8)

P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.

http://www.webmd.com/oral-health/guide/laser-usedentistry .

http://www.ada.org/1860.aspx .

S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Dekker, 2003), pp. 359–394.

M. Niemz, Laser Tissue Interactions: Fundamentals and Application (Springer-Verlag, 2002), pp. 181–182.

M. N. Ozisik, Heat Conduction (Wiley, 1993).

J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).

American National Standard, “Standard method of test for thermal conductivity of materials by means of guarded hot plate,” ASTM Committee C16, designation (October1971), pp. 15–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Coupon setup and the tooth slice.

Fig. 2.
Fig. 2.

SEM images of dentine and enamel surface.

Fig. 3.
Fig. 3.

Schematic layout of the thermal imaging experiment.

Fig. 4.
Fig. 4.

Sketch of temperatures in a dental issue described by Fourier heat conduction equation and a TTM.

Fig. 5.
Fig. 5.

Computational domain for the 2D planar modeling.

Fig. 6.
Fig. 6.

Transient temperatures at the laser spot center on the irradiated surface of the dental tissue for four laser powers.

Fig. 7.
Fig. 7.

Temperature distributions over the irradiated surface at t=0.4 and 1 s for the case of laser power of 540 mW.

Fig. 8.
Fig. 8.

Comparison of temperature distributions in the radial direction between simulations and experiment for the case of laser power of 540 mW.

Fig. 9.
Fig. 9.

Temperature distributions along the axisymmetric axis at t=0.50005, 0.5009, and 1 s obtained from the axisymmetric model for the case of laser power of 540 mW.

Fig. 10.
Fig. 10.

Comparison between the 1D model and the 2D axisymmetric model for the case of laser power of 540 mW.

Tables (4)

Tables Icon

Table 1. Design Parameters Used in the IHT Analysis

Tables Icon

Table 2. Thermophysical Properties of Dental Tissue

Tables Icon

Table 3. Measured Temperature Ytf at Five Final Times (tf)

Tables Icon

Table 4. Optimized Values of Surface Reflectivity and Heat Transfer Coefficient

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ρCpTt=kT+j1nSj,
Sj(r,z,t)=0.94Jo(1R)δstpexp[2(rrs)2zδs2.77(ttjtp)2],
ρ(i)Cp(i)hT(i)t=k¯(i)(2T(i)x2+2T(i)y2)+j=1nS¯(i)j,
S¯(i)j(x,y,t)=0.94Jo(1R(i))tp[1exp(hδs(i))]exp(2x2+y2rs22.77(ttjtp)2).
S¯(i)j(x,y,t)=Jo(1R(i))[1exp(hδs(i))]exp(2x2+y2rs2)δ(ttj),
qh(i)=hc(T(i)T),
k¯(1)TCDn=h¯c(TCDT)andTAFn=0,
qc(i)=k¯(i)[ΔsIΔsoToTb(i)(ΔsI+Δso)ΔsoΔsITI(i)Tb(i)(ΔsI+Δso)],
T(1)=T(2)andq(1)=q(2)
T(i)(x,y,t=0)=To.
ρ(1)Cp(1)T(1)t=k(1)(1rT(1)r+2T(1)r2+2T(1)z2)+j=1nS^(1)j(r,z,t),
S^(1)j(r,z,t)=Jo(1R(1))δs(1)exp[2(rrs)2zδs(1)]δ(ttj).
f=[TtfYtfYtf]2,

Metrics