Abstract

Endoscopic optical coherence tomography (OCT) imaging has been demonstrated using microelectromechanical system (MEMS) technology by several research groups. The focus of this work is to study how the OCT imaging performance is affected by the radius of curvature of MEMS mirrors as well as the optical alignment accuracy inside small imaging probes. The goal of this study is to provide guidance for assembly tolerance and design optimization of OCT endoscopic probes. Gaussian beam propagation is used for theoretical analysis which is confirmed by optical simulation and verified experimentally with a time-domain OCT system as well. It has been found that the OCT imaging is very sensitive to the distance from the fiber end to the gradient-index (GRIN) lens, which needs to be controlled within 0.1 mm to achieve working distance (WD) longer than 3.5 mm and lateral resolution around 25 μm. The impact on image quality of the MEMS mirror is negligible if the radius of curvature of the mirror surface is greater than 200 mm. In addition, we studied the astigmatism introduced by cylindrical plastic tubing; the maximum astigmatism ratio is 1.1 when the WD is around 2.5 mm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
    [CrossRef]
  3. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [CrossRef]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [CrossRef]
  6. M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
    [CrossRef]
  7. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef]
  9. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53–55 (2005).
    [CrossRef]
  10. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
    [CrossRef]
  11. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15, 18130–18140 (2007).
    [CrossRef]
  12. J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
    [CrossRef]
  13. L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.
  14. J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011).
    [CrossRef]
  15. W. A. Benalcazar, W. Jung, and S. A. Boppart, “Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters,” Opt. Lett. 37, 1100–1102 (2012).
    [CrossRef]
  16. J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering (Marcel Dekker, 2003), pp. 999–1013.
  17. R. Herloski, S. Marshall, and R. Antos, “Gaussian beam ray-equivalent modeling and optical design,” Appl. Opt. 22, 1168–1174 (1983).
    [CrossRef]
  18. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 15.
  19. J. Alda and G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990).
    [CrossRef]
  20. G. A. Massey and A. E. Siegman, “Reflection and refraction of Gaussian light beams at tilted ellipsoidal surfaces,” Appl. Opt. 8, 975–978 (1969).
    [CrossRef]
  21. CODE V 10.5 SR1, Synopsys, http://www.opticalres.com/cv/cvprodds_f.html .
  22. W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
    [CrossRef]
  23. L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009).
    [CrossRef]
  24. P. Meemon, K. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47, 2452–2457 (2008).
    [CrossRef]
  25. J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34, 1943–1945 (2009).
    [CrossRef]
  26. D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
    [CrossRef]

2012

2011

J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011).
[CrossRef]

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

2010

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

2009

J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34, 1943–1945 (2009).
[CrossRef]

L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009).
[CrossRef]

2008

2007

2006

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

2005

2003

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef]

2001

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

2000

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

1995

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990

1983

1969

Ahmad, A.

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

Alda, J.

J. Alda and G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990).
[CrossRef]

J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering (Marcel Dekker, 2003), pp. 999–1013.

Antos, R.

Arya, A. V.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

Bachman, M.

Bancu, M. G.

Benalcazar, W.

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

Benalcazar, W. A.

Bernstein, J. J.

Boppart, S. A.

W. A. Benalcazar, W. Jung, and S. A. Boppart, “Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters,” Opt. Lett. 37, 1100–1102 (2012).
[CrossRef]

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Boreman, G. D.

Bouma, B. E.

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15, 18130–18140 (2007).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Brand, B.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Chak, A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Z.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53–55 (2005).
[CrossRef]

Choe, S.

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Cobb, M. J.

de Boer, J. F.

Duker, J.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Feldchtein, F.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Freund, J.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Fritscher-Ravens, A.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Fu, L. L.

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Fujimoto, J.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gelikonov, G.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Gelikonov, V.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Gladkova, N.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Guo, S.

Hee, M. R.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Herloski, R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huo, L.

Hwang, J. H.

Isenberg, G. A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Izatt, J. A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Jackle, S.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Jia, H. Z.

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Jia, K.

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Jung, W.

W. A. Benalcazar, W. Jung, and S. A. Boppart, “Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters,” Opt. Lett. 37, 1100–1102 (2012).
[CrossRef]

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Kim, K. H.

Kobayashi, K.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Lau, W.

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Lee, K.

Lee, T. W.

Li, G. P.

Li, X.

Lin, C. P.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, L.

Maguluri, G. N.

Marshall, S.

Massey, G. A.

McCormick, D. T.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Meemon, P.

Murali, S.

Park, B. H.

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Puliafito, A.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Puliafito, C.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Reichel, E.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Rogomentich, F. J.

Rolland, J.

Rollins, A. M.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Samuelson, S. R.

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Schroder, S.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Schuman, J.

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Schuman, J. S.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Seitz, U.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Sergeev, A.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Sharma, U.

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

Siegman, A. E.

Sivak, M. V.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Soehendra, N.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Sorg, B. S.

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Stinson, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sun, J.

J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011).
[CrossRef]

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Sun, J. J.

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Swanson, E.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Terentieva, A.

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Tien, N. C.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Tu, H.

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

Ung-Runyawee, R.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Wang, D. L.

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Wang, L.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Wang, Y.

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

Willis, J.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Wong, B. J. F.

Wong, R. C.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Wu, L.

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009).
[CrossRef]

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Wu, Y.

Xi, J.

Xie, H.

J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011).
[CrossRef]

J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009).
[CrossRef]

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

Xie, H. K.

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Zhang, J.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Curr. Opin. Ophthalmol.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
[CrossRef]

Endoscopy

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).

Gastrointest. Endosc.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef]

Int. J. Opt.

J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011).
[CrossRef]

J. Biomed. Opt.

W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010).
[CrossRef]

J. Microlithogr., Microfabr., Microsyst.

L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009).
[CrossRef]

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef]

Ophthalmology

A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).

Opt. Express

Opt. Lett.

Proc. SPIE

D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Skin Res. Technol.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

Other

L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.

J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering (Marcel Dekker, 2003), pp. 999–1013.

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 15.

CODE V 10.5 SR1, Synopsys, http://www.opticalres.com/cv/cvprodds_f.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

OCT probe design. (a) Schematic showing the optical components of the probe (drawn not to scale). (b) SEM picture of the employed MEMS mirror. (c) Assembled probe. (d) 2D OCT image of mouse ear; E, epidermis; D, dermis; C, cartilage; and cc, conjunctive capsule. (e) 3D OCT image of mouse ear [13].

Fig. 2.
Fig. 2.

Schematic diagram and corresponding ABCD matrix of an endoscopic imaging probe (a) without MEMS mirror and tubing, (b) with MEMS mirror and without tubing, and (c) with both MEMS mirror and tubing.

Fig. 3.
Fig. 3.

3D model of the optical system built in CODE V.

Fig. 4.
Fig. 4.

Optical testing experiments. (a) Top view schematic of the experimental setup, (b) Experimental setup for testing, (c) 2D OCT image of a distinguishable resolution pattern, and (d) 3D OCT image of the distinguishable resolution pattern.

Fig. 5.
Fig. 5.

Effects of the distance between the fiber and the GRIN lens on (a) WD and resolution, (b) WD sensitivity and resolution sensitivity, and (c) WD and resolution for varying DBFG with different spacer types.

Fig. 6.
Fig. 6.

Effects of the MEMS mirror radius of curvature on (a) WD and resolution in x axis and y axis, and (b) WD astigmatic ratio and resolution astigmatic ratio.

Fig. 7.
Fig. 7.

Effects of DBFG in the probe with FEP tubing on (a) WD and resolution and (b) resolution astigmatic ratio. Effects of (c) refractive index on inner radius and thickness and (d) FEP tubing on resolution astigmatic ratio.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

(ABCD)a=M56M45M34M23M12=(100ng)(cos(glg)1gsin(glg)gsin(glg)cos(glg))(100nong)(1l101)(100nfno),
M78x=(102cosθR1),
M78y=(102Rcosθ1).
(ABCD)bx=M78xM67M56M45M34M23M12=(102cosθR1)(1l201)(ABCD)a,
(ABCD)by=M78yM67M56M45M34M23M12=(102Rcosθ1)(1l201)(ABCD)a.
(ABCD)tubex=(101ntRont)(1lt01)(10nt1ntRi1nt)(1l301),
(ABCD)tubey=(100nt)(1lt01)(1001nt)(1l301),
(ABCD)cx=(101ntRont)(1lt01)(10nt1ntRi1nt)(1l301)(ABCD)bx,
(ABCD)cy=(100nt)(1lt01)(1001nt)(1l301)(ABCD)by.
f1=πnfw012λ,
q1=iπnfw012λ.
q2=Aq1+BCq1+D,
q2=zw+if2=zw+iπw022λ,
WD=zw=ACf12+BDC2f12+D2,
SR=w02=λf1(ADBC)π(C2f12+D2).
A=cos(glg),
B=nfl1nocos(glg)+nfgngsin(glg),
C=gngsin(glg),
D=gngnfl1nosin(glg)+nfcos(glg).
WD=ngg2(f12+nf2l12no2nf2ng2g2)sin(2glg)+nf2l1no2cos(2glg)ng2g2sin2(glg)f12+[nfcos(glg)ngnfl1gnosin(glg)]2,
SR=λnff1/πng2g2sin2(glg)f12+[nfcos(glg)ngnfl1gnosin(glg)]2.
WD=0.533l1+0.0369l12+0.139l1+0.00737,
SR=5.642.82l12+0.39l1+0.0208,

Metrics