Abstract

A procedure for computing the phase transmission function of diffractive optical elements intended to form an array of optical bottle beams is proposed and studied. The procedure is based on a superposition of Bessel beams. We show that the hollow circular beams (optical bottle beams) are suited for trapping transparent spherical micro-objects matched in radius with the beam radius. A series of experiments on trapping transparent micro-objects in the optical bottle arrays is described. Results of an experiment on trapping opaque spherical microparticles in a double optical bottle are reported.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [Crossref]
  2. B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
    [Crossref]
  3. V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
    [Crossref]
  4. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by Moire techniques,” Opt. Lett. 36, 1491–1493 (2011).
    [Crossref]
  5. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
    [Crossref]
  6. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chuk, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  7. L. Isenhower, W. Williams, A. Dally, and M. Saffman, “Atom trapping in an interferometrically generated bottle beam trap,” Opt. Lett. 34, 1159–1161 (2009).
    [Crossref]
  8. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
    [Crossref]
  9. J.-H. Lin, M.-D. Wei, H.-H. Liang, K.-H. Lin, and W.-F. Hsieh, “Generation of supercontinuum bottle beam using an axicon,” Opt. Express 15, 2940–2946 (2007).
    [Crossref]
  10. M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
    [Crossref]
  11. F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).
  12. D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).
  13. P.-T. Tai, W.-F. Hsieh, and C.-H. Chen, “Direct generation of optical bottle beams from a tightly focused end-pumped solid-state laser,” Opt. Express 12, 5827–5833 (2004).
    [Crossref]
  14. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
    [Crossref]
  15. S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
    [Crossref]
  16. Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. N. Christodoulides, and J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
    [Crossref]
  17. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
    [Crossref]
  18. V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).
  19. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  20. R. M. Herman and T. A. Wiggins, “Hollow beams of simple polarization for trapping and storing atoms,” J. Opt. Soc. Am. A 19, 116–121 (2002).
    [Crossref]
  21. C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
    [Crossref]
  22. A. Fedotowsky and K. Lehovec, “Optimal filter design for annular imaging,” Appl. Opt. 13, 2919–2923 (1974).
    [Crossref]
  23. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
  24. S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).
  25. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D. N. Christodoulides, and Z. Chen, “Observation of trapping and transporting air-borne absorbing particles with a single optical beam,” Opt. Express 20, 16212–16217 (2012).
    [Crossref]
  26. V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).
  27. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [Crossref]
  28. R. V. Skidanov, “Computation of an interaction force between a light beam and arbitrary-form microparticles,” Comput. Opt. 28, 18–21 (2005).

2013 (1)

2012 (1)

2011 (3)

2010 (3)

F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

2005 (2)

S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
[Crossref]

R. V. Skidanov, “Computation of an interaction force between a light beam and arbitrary-form microparticles,” Comput. Opt. 28, 18–21 (2005).

2004 (3)

V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
[Crossref]

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

P.-T. Tai, W.-F. Hsieh, and C.-H. Chen, “Direct generation of optical bottle beams from a tightly focused end-pumped solid-state laser,” Opt. Express 12, 5827–5833 (2004).
[Crossref]

2003 (2)

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

2002 (1)

2001 (2)

V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

2000 (1)

1999 (3)

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
[Crossref]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[Crossref]

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

1986 (1)

1974 (1)

Ahluwalia, B. P. S.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

Ahluwalia, B. S.

S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
[Crossref]

Arlt, J.

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
[Crossref]

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
[Crossref]

Ashkin, A.

Bjorkholm, J. E.

Cacciapuoti, L.

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

Cannan, D.

Chen, C.-H.

Chen, Z.

Cheong, W. C.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

Christodoulides, D. N.

Chuk, S.

Dally, A.

Daria, V. C.

V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
[Crossref]

Davidson, N.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[Crossref]

de Angelis, M.

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

Desyatnikov, A. S.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

Dholakia, K.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Dziedzic, J. M.

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Efremidis, N. K.

Fedotowsky, A.

Gamazkov, K. A.

D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).

Glückstad, J.

V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
[Crossref]

Herman, R. M.

Hernandez, D.

Hsieh, W.-F.

Huang, S.

Isenhower, L.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Jefimovs, K.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

Kachalov, D. G.

D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[Crossref]

Khonin, S. N.

D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).

Khonina, S. N.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

Kivshar, Y. S.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Kivshar, Yu. S.

Kotlyar, V. V.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

Krolikowski, W.

Krolikowski, W. Z.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Lehovec, K.

Liang, H.-H.

Lin, J.-H.

Lin, K.-H.

Liu, B.

F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).

Liu, J.

Lu, W.

F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).

Malyekhin, A. S.

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

McGloin, D.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

McQueen, C. A.

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
[Crossref]

Melville, H.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Mills, M.

Mills, M. S.

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[Crossref]

Paakkonen, P.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Padgett, M. J.

Pavelyev, V. S.

D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).

Pierattini, G.

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

Prakash, J.

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Rodrigo, P. J.

V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
[Crossref]

Saffman, M.

Salazar, M.

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Sibbett, W.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Simonen, J.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Skidanov, R. V.

R. V. Skidanov, “Computation of an interaction force between a light beam and arbitrary-form microparticles,” Comput. Opt. 28, 18–21 (2005).

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

Spalding, G. C.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Tai, P.-T.

Tao, S. H.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
[Crossref]

Tino, G. M.

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

Turunen, J.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Wang, H.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

Wei, M.-D.

Wiggins, T. A.

Williams, W.

Wu, F.

F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).

Yuan, X.-C.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
[Crossref]

Zhang, L. S.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

Zhang, P.

Zhang, Z.

Am. J. Phys. (1)

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a “nondiffracting” light beam,” Am. J. Phys. 67, 912–915 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[Crossref]

Appl. Phys. Lett. (1)

V. C. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004).
[Crossref]

Chin. Opt. Lett. (1)

Comput. Opt. (4)

D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonin, “Optimization of a binary DOE for generation of an optical bottle beam,” Comput. Opt. 35, 70–76 (2011).

V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Methods for encoding composite DOEs,” Comput. Opt. 21, 36–39 (2001).

V. V. Kotlyar, S. N. Khonina, A. S. Malyekhin, and V. A. Soifer, “Diffractive optical element encoding using a local phase jump technique,” Comput. Opt. 19, 54–64 (1999).

R. V. Skidanov, “Computation of an interaction force between a light beam and arbitrary-form microparticles,” Comput. Opt. 28, 18–21 (2005).

J. Appl. Phys. (1)

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006).
[Crossref]

J. Mod. Opt. (2)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (1)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Proc. SPIE (1)

F. Wu, W. Lu, and B. Liu, “Generation of self-imaged optical bottle beam by using axicons,” Proc. SPIE 7721, 77211C (2010).

Pure Appl. Opt. (1)

S. H. Tao, X.-C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” Pure Appl. Opt. 7, 40–46 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

(Top) Intensity distribution (negative) in the zeroth-order Bessel beam with parameter α=32.15·103m1; (middle) intensity distribution (negative) in the zeroth-order Bessel beam with parameter α=10,31·103m1; (bottom) intensity distribution (negative) of a superposition of three zeroth-order Bessel beams with parameters α1=21.85·103m1, α2=17.08·103m1, and α3=10.31·103m1.

Fig. 2.
Fig. 2.

Distribution patterns in different planes when generating an intensity distribution in the form of an equilateral triangle.

Fig. 3.
Fig. 3.

Arrangement of beams in a superposition that forms a single optical bottle beam.

Fig. 4.
Fig. 4.

(a) Amplitude and (b) phase functions of a DOE to form a single optical bottle (black, 0; white π). (c)–(g) The intensity profiles at different distances from such a DOE are shown at (c) 645 mm, (d) 665 mm, (e) 685 mm, (f) 705 mm, and (g) 725 mm.

Fig. 5.
Fig. 5.

Arrangement of beams in a superposition that generates (a) two and (b) three optical bottle beams.

Fig. 6.
Fig. 6.

Phase function of DOEs to form (a) two and (b) three optical bottle beams (black, 0; white, π).

Fig. 7.
Fig. 7.

Intensity distributions at different distances from the two-optical-bottles DOE.

Fig. 8.
Fig. 8.

Intensity distributions at different distances from the three-optical-bottles DOE.

Fig. 9.
Fig. 9.

Examples of microscope images and 3D models of microrelief fragments for the manufactured DOEs.

Fig. 10.
Fig. 10.

Experimental intensity distributions at different distances from the two-optical-bottles DOE.

Fig. 11.
Fig. 11.

Experimental intensity distributions at different distances from the three-optical-bottles DOE.

Fig. 12.
Fig. 12.

Refraction of a ray in the surface of a spherical microparticle with regard for the Fresnel reflection. N is the normal to the surface at the incidence point; N1 is the normal to the surface at the exit point; A is the unit vector that defines the direction of light propagation; A1 is the unit vector of reflected ray direction; A2 is the unit vector of refracted ray direction; α is the incident angle; A3 is the unit vector that defines the direction of refracted on the second surface of the microsphere ray; β is the refraction angle; γ is the ray incidence angle on the second surface of the microsphere; φ is the angle between the vertical and the direction toward the microparticle entry point; δ is the ray refraction angle on the second surface of the microsphere; F is the resulting force; Fp is the light pressure force; Fg is the gradient force; n1 is the refractive index of the medium; n2 is the refractive index of the microparticle.

Fig. 13.
Fig. 13.

Projection of the total force acting upon a microsphere against the central angle φ at ray entry point: solid line for n1=1.33, n2=1.56, dotted line for n1=1.00, n2=1.56, dashed line for n1=1.00, n2=2.40.

Fig. 14.
Fig. 14.

Experimental optical setup to perform the trapping of polystyrene microbeads in a solid-state laser beam.

Fig. 15.
Fig. 15.

Motion stages of two polystyrene microbeads trapped in a double optical bottle beam. The black arrow designates a motionless particle.

Fig. 16.
Fig. 16.

Motion stages of three polystyrene microbeads trapped in a triple optical bottle beam. The black arrow designates a motionless particle.

Fig. 17.
Fig. 17.

Motion stages of a 3 μm tin microbead in a double optical bottle beam. The black arrow designates a motionless particle. The white arrow designates a moved particle.

Tables (1)

Tables Icon

Table 1. Key Parameters of the Traps and Microparticle Motion

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

τ(x,y)=sgn(Jm(αr))exp(imφ),
T(x,y)=p=1p=NCpsgn(J0(αpr))×exp[i(xup+yvp)],
ε=NbN,
p=EcA,
F=Etc(1+χ)=Wc(1+χ),
P=Ic(1+χ),
Fp=2χWccosαN,
Fg=2(1χ)Wcsinαβ2AA2|AA2|,
F=Fp+Fg.
Fp=2χWccosφ(N),
Fpx=2χWccosφsinφ=χWcsin2φ.
n1sinϕ=n2sinβ,
Fgx=2(1χ)Wcsinφβ2×sin(φβ)sin2(φβ)+(1+cos(φβ))2=2(1χ)Wcsinφβ2sin(φβ)2(1cos(φβ))=2(1χ)Wcsinφarcsin(n1n2sinφ)2×sin[φarcsin(n1n2sinφ)]2{1cos[φarcsin(n1n2sinφ)]}.
Fgx=2{1sin2[φarcsin(n1n2sinφ)]sin2[φ+arcsin(n1n2sinφ)]}Wc×sinφarcsin(n1n2sinφ)2×sin[φarcsin(n1n2sinφ)]2{1cos[φarcsin(n1n2sinφ)]}.
Fg=2(1χ)Wcsinαδ2·AA3|AA3|.
Fgx=2{1sin2[φarcsin(n1n2sinφ)]sin2[φ+arcsin(n1n2sinφ)]}Wc×sinφarcsin(n1n2sinφ)2×sin[2φarcsin(n1n2sinφ)]2(1cos{2[φarcsin(n1n2sinφ)]}).
R=rsinϕ,
F=6πrηv,

Metrics