Abstract

Confocal line detection has been shown to improve contrast in light-sheet-based microscopy especially when illuminating the sample by Bessel beams. Besides their self-reconstructing capability, the stability in propagation direction of Bessel beams allows to block the unwanted emission light from the Bessel beam’s ring system. However, due to phase aberrations induced especially at the border of the specimen, Bessel beams may not propagate along lines parallel to the slit detector. Here we present a concept of how to correct the phase of each incident Bessel beam such that the efficiency of confocal line detection is improved by up to 200%–300%. The applicability of the method is verified by the results obtained from numerical simulations based on the beam propagation method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikroskopsicher Teilchen,” Ann. Phys. 10, 1 (1903).
  2. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
    [CrossRef]
  3. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34, 3041–3043 (2009).
    [CrossRef]
  4. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
    [CrossRef]
  5. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
    [CrossRef]
  6. F. O. Fahrbach and A. Rohrbach, “A line scanned light-sheet microscope with phase shaped self-reconstructing beams,” Opt. Express 18, 24229–24244 (2010).
    [CrossRef]
  7. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20, 21805–21814 (2012).
    [CrossRef]
  8. L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone, “Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain,” Opt. Express 20, 20582–20598 (2012).
    [CrossRef]
  9. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
    [CrossRef]
  10. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
    [CrossRef]
  11. C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
    [CrossRef]
  12. A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
    [CrossRef]
  13. M. D. Feit and J. A. Fleck, “Light propagation in graded index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef]
  14. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21, 13824–13839 (2013).
    [CrossRef]
  15. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy,” Opt. Express 21, 11425–11440 (2013).
    [CrossRef]
  16. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [CrossRef]

2013 (2)

2012 (3)

2011 (3)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

2010 (3)

F. O. Fahrbach and A. Rohrbach, “A line scanned light-sheet microscope with phase shaped self-reconstructing beams,” Opt. Express 18, 24229–24244 (2010).
[CrossRef]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

2009 (1)

2008 (1)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

1978 (1)

1903 (1)

H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikroskopsicher Teilchen,” Ann. Phys. 10, 1 (1903).

Alessandri, K.

Baumgart, E.

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Bria, A.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

Ducommun, B.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Fahrbach, F. O.

Federici, F.

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

Fehrenbach, J.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Feit, M. D.

Fleck, J. A.

Frongia, C.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Gay, G.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Gurchenkov, V.

Haseloff, J.

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

Iannello, G.

Jorand, R.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

Kubitscheck, U.

Lobjois, V.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Lorenzo, C.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Maandhui, A.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Maizel, A.

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Nassoy, P.

Pavone, F. S.

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Rohrbach, A.

Sacconi, L.

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

Siedentopf, H.

H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikroskopsicher Teilchen,” Ann. Phys. 10, 1 (1903).

Silvestri, L.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Stelzer, E. H. K.

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

von Wangenheim, D.

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

Weiss, P.

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

Zsigmondy, R.

H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikroskopsicher Teilchen,” Ann. Phys. 10, 1 (1903).

Ann. Phys. (1)

H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikroskopsicher Teilchen,” Ann. Phys. 10, 1 (1903).

Appl. Opt. (1)

Cell Div. (1)

C. Lorenzo, C. Frongia, R. Jorand, J. Fehrenbach, P. Weiss, A. Maandhui, G. Gay, B. Ducommun, and V. Lobjois, “Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy,” Cell Div. 6, 22 (2011).
[CrossRef]

Nat. Commun. (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[CrossRef]

Nat. Methods (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef]

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Plant J. (1)

A. Maizel, D. von Wangenheim, F. Federici, J. Haseloff, and E. H. K. Stelzer, “High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy,” Plant J. 68, 377–385 (2011).
[CrossRef]

Science (2)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[CrossRef]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Interferometric setup scheme. The illumination beam is split up into a reference beam and the object beam (blue colors). An SLM modulates a conical phase to the beam, resulting in a Bessel beam (IO, illumination objective; TO, transmission objective). The interference intensity is detected by a camera (CAMtrans). Fluorescence emitted from the object (green colors) is imaged by a detection objective (DO) onto a line-confocal camera (CAMCL).

Fig. 2.
Fig. 2.

(a) Comparison of refractive index projections in a cell cluster and in a large homogeneous sphere, (b) cross section through the refractive index distribution of the cell cluster, and (c) volume-rendered cell cluster and shell-like constitution of a single cell with outer radius Rsc and inner radius a·Rsc (a=0.85).

Fig. 3.
Fig. 3.

(a) Nontilted and (b) tilted Bessel beam intensity cross sections and phase diagrams.

Fig. 4.
Fig. 4.

Power spectrum of Bessel beam incident on a spherical cell cluster. (a) Along the propagation direction, log(I(kx,z)) and (b) behind the spherical cell cluster, log(I(kx,ky)).

Fig. 5.
Fig. 5.

Light-sheet intensities p(x,y) located in the focal plane after 24 μm propagation through a cluster of spheres. (a) Bessel beam light sheet with conventional imaging, (b) Bessel beam light sheet using confocal line detection without phase correction, and (c) Bessel beam lightsheet using confocal line detection with phase correction.

Fig. 6.
Fig. 6.

Bessel beam light-sheet intensities p(x,z) located in the focal plane while propagating through a large sphere. (a) Bessel beam light sheet with conventional imaging, (b) fluorescence is detected only along the straight line of the slit, and (c) Bessel beam light sheet using confocal line detection.

Fig. 7.
Fig. 7.

Refraction according to Snell’s law at both interfaces results in the green ray with exit angle αEU and displacement xEU. The corrected blue ray has an incident angle α0C and an initial displacement with respect to the sphere center of x0C. The inset in the lower right corner shows a simulation of the Bessel beam being refracted at the sphere surfaces.

Fig. 8.
Fig. 8.

Retrieval of the mean k vector from the distorted 2D phase ϕdef (x,y,bx). Four phase-shifted interference patterns were obtained behind the spherical cell cluster. The retrieved phase ϕdef (x,0,bx) is shown in 1D for the wrapped case. This phase allows to determine the exit angle of the beam and correction for the incident beam angle.

Fig. 9.
Fig. 9.

Confocal line light-sheet intensities pCL (x,z) located in the focal plane while propagating through a large sphere. (a) Without phase correction and (b) with phase correction.

Fig. 10.
Fig. 10.

Confocal line light-sheet intensities pCL (x,y) located in the focal plane while propagating through a cell cluster. (a) Without phase correction and (b) with phase correction.

Fig. 11.
Fig. 11.

Average decay of the detected fluorescence along the propagation direction for (a) a large sphere, and (c) a cell cluster. Enhancement factor of the feedback phase correction for (b) the case of the large sphere, and (d) the case of the cell cluster.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E˜(kx,ky,z+dz)=FT[E(x,y,z)·eik0·δn(x,y,z)·dz]·ei·dz·(k0nm)2kx2ky2.
nsp(x,y,z)=nm+δn·step(Rspx2+y2+z2),
ncc(r)=nm+n·j=1N[step(Rsc|rrj|)13step(0.85Rsc|rrj|)].
pLS(r)=(C(r)·hSB(rbx)dbx)*hdet(r)C0·hSB(rbx)dbx=C0·hscan(r).
pCL(r)C(r)*[hSB(rbx)·hdet(r)]dbxC0·hCL(rbx)dbx.
[n0αEUxEU]=[10zE/n01]×[a11a12a21a22]×[10z0/n01]×[0xo]
[a11a12a21a22]=[1(δn/R)·dl/n12(δn/R)+(δn/R)2·dl/n1dl/n11(δn/R)·dl/n1].
n1n0·2x0xEU+x0αEUzE=n0·(1+δn/n0),
R2·δn·x0·zEn1(xEUx0(12δn/n1)).
α0C=θ1θ2=sin1(n1n0bxR)sin1(bxR).
x0C=bx(R+z0R2bx2)·tanα0C.
EB(x,y,zend,bx)=E0B(x,y,zend,x0)·exp(iϕB(x,y,x0))·exp(iϕdef(x,y,zend,x0)).
EB,j(x,y,zend,bx)=EB(x,y,zend,bx)·exp(iϕB,j).
Itot,j(x,y,bx)=I0B(x,y,bx)+I0G(x,y)+2I0BI0Gcos(Δϕj(x,y,bx)).

Metrics