Abstract

In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40–50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
    [CrossRef]
  2. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211–213 (2007).
    [CrossRef]
  3. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
    [CrossRef]
  4. A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
    [CrossRef]
  5. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
    [CrossRef]
  6. S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).
  7. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 1, pp. 47–51.
  8. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef]
  9. J. Ma and W. J. Bock, “Dramatic performance enhancement of evanescent-wave multimode fiber fluorometer using non-Lambertian light diffuser,” Opt. Express 15, 16457–16470 (2007).
    [CrossRef]
  10. A. J. Meixner, M. A. Bopp, and G. Tarrach, “Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope,” Appl. Opt. 33, 7995–8000 (1994).
    [CrossRef]
  11. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
    [CrossRef]
  12. Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.
  13. S. Sarkar Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, “Optical fiber tip for field-enhanced second harmonic generation,” Opt. Lett. 37, 4017–4019 (2012).
    [CrossRef]
  14. S. K. Mondal, S. Sarkar Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20, 16180–16185 (2012).
    [CrossRef]

2012

2011

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

2008

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

2007

1999

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

1994

1973

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
[CrossRef]

1971

Albert, J.

Antonello, A.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[CrossRef]

Bajpai, P. P.

S. Sarkar Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, “Optical fiber tip for field-enhanced second harmonic generation,” Opt. Lett. 37, 4017–4019 (2012).
[CrossRef]

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Bock, W. J.

Booksh, K. S.

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Bopp, M. A.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 1, pp. 47–51.

Brigo, L.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Brusatin, G.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Buso, D.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
[CrossRef]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Gloge, D.

Gu, M.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Guglielmi, M.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

He, Z.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Jia, B.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Kapur, P.

S. Sarkar Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, “Optical fiber tip for field-enhanced second harmonic generation,” Opt. Lett. 37, 4017–4019 (2012).
[CrossRef]

S. K. Mondal, S. Sarkar Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20, 16180–16185 (2012).
[CrossRef]

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Kumar, M.

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Ma, J.

Martucci, A.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Matsumura, H.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
[CrossRef]

Meixner, A. J.

Mondal, S. K.

S. Sarkar Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, “Optical fiber tip for field-enhanced second harmonic generation,” Opt. Lett. 37, 4017–4019 (2012).
[CrossRef]

S. K. Mondal, S. Sarkar Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20, 16180–16185 (2012).
[CrossRef]

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Mrozynski, G.

Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.

Obando, L. A.

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
[CrossRef]

Perotto, G.

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Quidant, R.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Righini, M.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Sarkar Pal, S.

S. Sarkar Pal, S. K. Mondal, P. P. Bajpai, and P. Kapur, “Optical fiber tip for field-enhanced second harmonic generation,” Opt. Lett. 37, 4017–4019 (2012).
[CrossRef]

S. K. Mondal, S. Sarkar Pal, and P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20, 16180–16185 (2012).
[CrossRef]

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Schrage, J.

Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.

Shevchenko, Y. Y.

Singh, N.

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Soenmez, Y.

Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.

Swamy, P. V. G.

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Tarrach, G.

Tiwari, U.

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Wallrabenstein, A.

Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 1, pp. 47–51.

Anal. Chem.

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Appl. Opt.

Electron. Lett.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode excitation in a multimode optical-fiber waveguide,” Electron. Lett. 9, 24 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Plasmonics

A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for optical and plasmonic applications,” Plasmonics 7, 633–639 (2012).
[CrossRef]

Rev. Sci. Instrum.

S. Sarkar Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, “Etched multimode microfiber knot-type loop interferometer refractive index sensor,” Rev. Sci. Instrum. 82, 095107 (2011).

Sci. Am.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 1, pp. 47–51.

Y. Soenmez, A. Wallrabenstein, J. Schrage, and G. Mrozynski, “Coupled mode analysis of power transport and loss in highly multimodal tapered dielectric waveguides for coupling applications,” IEEE Conference on Laser and Electro-optics-Pacific Rim, Seoul, August, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Coating of nanoparticles around the etched multimode optical fiber in the presence of EW (a) toward the end point of the coated fiber, (b) in the middle portion of the fiber with uniform coating, and (c) in the gold nanoparticle (10 nm) coated fiber. (d) Similar to (c) but with some nonuniformity, scale bar 2 μm. (e) Estimated coating thickness of silver (dash line) and gold (solid line) film.

Fig. 3.
Fig. 3.

(a) Optical microscopic images of samples prepared with two drops of the solution with a gap. (b) Zoomed image of the marked zone in (a). (c) Intensity profile along the fiber covering the noncoated and coated zone which shows a sudden jump in the intensity due to the scattering from the particles in the coated fiber.

Fig. 4.
Fig. 4.

Simulation results showing the decay of the EW from the core-cladding boundary for multimode fibers of core diameter (a) 22 μm and (b) 45 μm.

Fig. 5.
Fig. 5.

Nanoparticle coated etched multimode fiber of diameter 45 μm. The coating thickness is expected to be <80nm. The inset (lower) is the zoomed surface texture of a selected zone. The inset (upper) is the etched multimode fiber without coating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(x,z)=E0exp(ikz)exp(x/d),
d(θ)=λ0/n22π[(n1/n2sinθ)21]1/2,
P=E2(x,z)I0exp(2x/d),
UJ1(U)J0(U)=WK1(W)K0(W).
Ψ(r,z)=mamψm(r)exp(iβmz),

Metrics