Abstract

This paper presents a new method of structured light-based 3D reconstruction, referred to here as Boundary Inheritance Codec, that provides high accuracy and low noise in projector–camera correspondence. The proposed method features (1) real-boundary recovery: the exact locations of region boundaries, defined by a coded pattern, are identified in terms of their real coordinates on the image plane. To this end, a radiance independent recovery of accurate boundaries and a disambiguation of true and false boundaries are presented. (2) Boundary inheritance: the consistency among the same boundaries of different layers in pattern hierarchy is exploited to further enhance the accuracy of region correspondence and boundary estimation. Extensive experimentations are carried out to verify the performance of the proposed Boundary Inheritance Codec, especially, in comparison with a number of well-known methods currently available, including Gray-code (GC) plus line/phase shift (LS/PS). The results indicate that the proposed method of recovering real boundaries with boundary inheritance is superior in accuracy and robustness to Gray-code inverse (GCI), GC+LS/PS. For instance, the error standard deviation and the percentile of outliers of the proposed method were 0.152 mm and 0.089%, respectively, while those of GCI were 0.312 mm and 3.937%, respectively, and those of GC+LS/PS were 0.280/0.321mm and 0.159/7.074%, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (31)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription