Abstract

Images from ordinary laparoscopes and endoscopes are two dimensional (2D), meaning the surgeon’s depth perception is hindered. The proposed method supplements the 2D image with an image of the depth profile of the surface. The depth profile is obtained in real time without surface contact. The profilometer uses the same principle for acquiring distance information as the divergence-ratio axi-vision camera. The profilometer was added to an ordinary laparoscope with minimal increase in the weight and diameter of the shaft. With the profilometer added, there was a significant improvement in the ability to detect minute protrusions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
    [CrossRef]
  2. H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton, 1976), pp. 27–63.
  3. M. Popat, Practical Fibreoptic Intubation (Butterworth, 2001).
  4. J. A. Grotenhuis, Endoscope-assisted Microneurosurgery: A Concise Guidebook (Machaon, 1998).
  5. W. B. Boast, Illumination Engineering (McGraw, 1953).

2006 (1)

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

Boast, W. B.

W. B. Boast, Illumination Engineering (McGraw, 1953).

Grotenhuis, J. A.

J. A. Grotenhuis, Endoscope-assisted Microneurosurgery: A Concise Guidebook (Machaon, 1998).

Hopkins, H. H.

H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton, 1976), pp. 27–63.

Iizuka, K.

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

Popat, M.

M. Popat, Practical Fibreoptic Intubation (Butterworth, 2001).

Rev. Sci. Instrum. (1)

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

Other (4)

H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton, 1976), pp. 27–63.

M. Popat, Practical Fibreoptic Intubation (Butterworth, 2001).

J. A. Grotenhuis, Endoscope-assisted Microneurosurgery: A Concise Guidebook (Machaon, 1998).

W. B. Boast, Illumination Engineering (McGraw, 1953).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Principle of the laparoscope with profilometer.

Fig. 2.
Fig. 2.

Response curve of the laparoscope with profilometer.

Fig. 3.
Fig. 3.

Layout of the laparoscope with profilometer.

Fig. 4.
Fig. 4.

Infrared photograph of the front and back annular light sources.

Fig. 5.
Fig. 5.

Experimental validation of the approximate expression for the illumination from an annular light source.

Fig. 6.
Fig. 6.

Geometry for the uniformity test.

Fig. 7.
Fig. 7.

Measured depth map of the test screen. The fine red lines are profiling lines. Test screen (a) at z=65mm and (b) at z=35mm from the tip of laparoscope.

Fig. 8.
Fig. 8.

Color independence test. (a) Tri-color object, (b) color-coded depth map, and (c) black and white depth map.

Fig. 9.
Fig. 9.

Measured results from the laparoscope with profilometer. (a) Image seen through the laparoscope. The distended stomach is not so obvious. (b) Color-coded depth map and the cross-sectional distribution indicated by the dotted red line. (c) Front view photograph of the object. (d) Side view photograph of the object with the measured cross section.

Fig. 10.
Fig. 10.

Micrometer head as a protruded target.

Fig. 11.
Fig. 11.

Comparison of the displays. (a) Length of the protrusion, (b) ordinary laparoscope, and (c) laparoscope with profilometer.

Fig. 12.
Fig. 12.

Geometry of an annular light source.

Fig. 13.
Fig. 13.

Geometry of the shadow effect.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E1=2πa1Δ1B11z2,
I1=2πa1Δ1B11z2σ14πl2.
I2=2πa2Δ2B21(z+s)2σ14πl2,
R=I1I2=a1Δ1B1a2Δ2B2z+sz.
z=sR1,
R=a2Δ2B2a1Δ1B1R.
m=a1Δ1B1a2Δ2B2.
z=sR1,
dE=BD2(cosα)(cosβ)2πrdr,
D=z2+r2,
cosα=cosβ=zz2+r2.
dE=(2πB)z2(z2+r2)2rdr.
E=πB[z2(z2+r2)]aa+Δ.
E=πBz2[(a2+z2)1(a2+2aΔ+z2)1],
E=πBz2{(a2+z2)1(a2+z2)1(1+2aΔ(a2+z2))1}.
2aΔ(a2+z2)1,
EπBz2{(a2+z2)1(a2+z2)1(12aΔ(a2+z2))}.
az.
E2πaΔB1z2.
zsh+sz=a2a1.
zsh=s(a2a1)1

Metrics