Abstract

In this study, an immersion Mirau interference microscope was developed for full-field optical coherence tomography (FFOCT). Both the reference and measuring arms of the Mirau interferometer were filled with water to prevent the problems associated with imaging a sample in air with conventional FFOCT systems. The almost-common path interferometer makes the tomographic system less sensitive to environmental disturbances. En face OCT images at various depths were obtained with phase-shifting interferometry and Hariharan algorithm. This immersion interferometric method improves depth and quality in three-dimensional OCT imaging of scattering tissue.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubois and A. C. Boccara, “Full-field optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, 2008), pp. 565–591.
  2. B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
    [CrossRef]
  3. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef]
  4. J. Moreau, V. Loriette, and A. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. I: theory,” Appl. Opt. 42, 3800–3810 (2003).
    [CrossRef]
  5. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392 (2005).
    [CrossRef]
  6. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
    [CrossRef]
  7. S. H. Lu, C. Y. Wang, C. Y. Hsieh, K. Y. Chiu, and H. Y. Chen, “Full-field optical coherence tomography using nematic liquid-crystal phase shifter,” Appl. Opt. 51, 1361–1366 (2012).
    [CrossRef]
  8. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  9. J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
    [CrossRef]
  10. G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
    [CrossRef]
  11. T. Anna, V. Srivastava, D. S. Mehta, and C. Shakher, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells,” Appl. Opt. 50, 6343–6351 (2011).
    [CrossRef]
  12. O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
    [CrossRef]
  13. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.

2012 (1)

2011 (1)

2010 (1)

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
[CrossRef]

2009 (2)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
[CrossRef]

G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
[CrossRef]

2008 (1)

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

1998 (1)

1985 (1)

Anna, T.

Beaurepaire, E.

Bhushan, B.

Blanchot, L.

Boccara, A.

Boccara, A. C.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

A. Dubois and A. C. Boccara, “Full-field optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, 2008), pp. 565–591.

Boccara, A.-C.

Brenner, D. J.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
[CrossRef]

Bruning, J. H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.

Chen, H. Y.

Chiu, K. Y.

Dabu, R.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
[CrossRef]

Dubois, A.

A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
[CrossRef]

A. Dubois and A. C. Boccara, “Full-field optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, 2008), pp. 565–591.

Echard, J.-P.

Elias, M.

Emond, I.

Frank, M.

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Gimzewski, J. K

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Gimzewski, J. K.

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Han, S.

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Hayasaka, Y.

Hrebesh, M. S.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
[CrossRef]

Hsieh, C. Y.

Koliopoulos, C. L.

Latour, G.

Lebec, M.

Loriette, V.

Lu, S. H.

Lyulko, O. V.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
[CrossRef]

Mehta, D. S.

Moreau, J.

Randers-Pehrson, G.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
[CrossRef]

Reed, J.

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Saint-Jalmes, H.

Sato, M.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
[CrossRef]

Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392 (2005).
[CrossRef]

Schmit, J.

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Schreiber, H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.

Shakher, C.

Soulier, B.

Srivastava, V.

Tanno, N.

Teitell, M. A

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Troke, J. J

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Vabre, L.

Vaiedelich, S.

Wang, C. Y.

Watanabe, Y.

Wyant, J. C.

Appl. Opt. (7)

Nanotechnology (1)

J. Reed, M. Frank, J. K. Gimzewski, J. J Troke, J. Schmit, S. Han, M. A Teitell, and J. K Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology 19, 235101 (2008).
[CrossRef]

Opt. Commun. (1)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry,” Proc. SPIE 7568, 756825 (2010).
[CrossRef]

Other (2)

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.

A. Dubois and A. C. Boccara, “Full-field optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, 2008), pp. 565–591.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Immersion Mirau interference microscope.

Fig. 2.
Fig. 2.

Separation of focal and zero-OPD planes when the refractive indices of sample and liquid are different.

Fig. 3.
Fig. 3.

(a) Intensity profile of the interferogram of a tilted mirror immersed in water. (b) Fringe envelope recovered by using five-step phase-shifting method.

Fig. 4.
Fig. 4.

xz OCT images of an onion specimen immersed in (a) air and (b) water (540μm×500μm).

Fig. 5.
Fig. 5.

OCT images of an amplitude grating film covered with a thin onion membrane. (a)–(d) xy sectional images (540μm×440μm) obtained at z=120, 192, 290, and 390 μm, respectively. (e) 3D tomographic image (540μm×440μm×600μm). (f) xz OCT image (540μm×600μm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

In(x,y)=A(x,y)+B(x,y)cos[ϕ(x,y)+(n1)π/2],n=1,,5,
γ(x,y)=B(x,y)A(x,y)=3[4(I4I2)2+(I1+I52I3)2]1/22(I1+I2+2I3+I4+I5),

Metrics