Abstract

Manufacturing spherical, aspheric, and freeform surfaces requires testing throughout the development and production process. State-of-the-art topography measurement is limited in applicability for intraocular lenses (IOLs), and there is no dedicated commercial surface measurement system available for freeform IOLs. The purpose of this work was to validate a deflectometric setup for surface measurement, detection of defects, and shape fidelity analysis for the development and production of IOLs. The setup is based on a phase measuring deflectometer with a field-of-view of 80mm×80mm and a mean repetition accuracy of 1.6·103D. The technique is suitable for detection of global and local surface errors, extracted from geometry and topography analysis. For validation according to DIN ISO 5725:2002, spherical IOLs with radii of curvature of 10 and 20 mm, a commercial aspheric IOL, and single-sided freeform IOL samples were used.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
    [CrossRef]
  2. Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
    [CrossRef]
  3. M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
    [CrossRef]
  4. M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
    [CrossRef]
  5. M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
    [CrossRef]
  6. J. Pfund, N. Lindlein, J. Schwider, R. Burow, T. Blumel, and K. E. Elssner, “Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor,” Opt. Lett. 23, 742–744 (1998).
    [CrossRef]
  7. Trioptics GmbH, “Flexible and reliable wavefront measurement,” http://www.trioptics.com/wavemaster/description.php (accessed 21 February 2013).
  8. Optocraft GmbH, “SHSOphthalmic autoROC—Shape and surface testing of intra ocular lenses and contact lenses,” http://www.optocraft.de/products/SHSautoROC/index.en.php (accessed 21 February 2013).
  9. S. A. Phasics, “Kaleo-R IOL: Surface characterization for ophthalmologic lenses industry,” http://www.phasicscorp.com/products/kaleo-range/kaleo-r-iol.html (accessed March 2013).
  10. Trioptics GmbH, “OptiSpheric—the industry’s standard for lens testing. Product sheet,” http://www.trioptics.de/pdfs/OptiSpheric_E_2006.pdf (accessed March 2013).
  11. LAMBDA-X, “NIMO TR0815—refractive intraocular lens power mapper and wavefront analyzer. Product sheet,” http://www.lambda-x.com/documents/LX-TR0815.pdf (accessed 3/2013).
  12. Rotlex (1994) Ltd., “Introducing the IOLA PLUS lens analyzer,” http://www.rotlex.com/IolaPlus.asp (accessed 21 February 2013).
  13. Rotlex (1994) Ltd., “IOLA—Introducing the IOLA MultiFocal. Product sheet,” http://www.rotlex.com/IolaMF.asp (accessed February 2013).
  14. S. A. Phasics, “Kaleo-i: Complete and fast accurate IOL quality control,” http://www.phasicscorp.com/products/kaleo-range/kaleo-i.html (accessed 3/2013).
  15. T. Eppig and A. Langenbucher, “Measurement systems for intraocular lenses. Part I—A comprehensive overview on techniques and devices,” in Global CONTACT (MediaWelt GmbH, 2011), pp. 36–39, http://de.calameo.com/read/0001260654f441abc6333 .
  16. L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
    [CrossRef]
  17. Lambda-X SA, “CURV—Radius of curvature. Product sheet,” http://www.lambda-x.com/documents/LX-CURV.pdf (accessed 8 March 2013).
  18. T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).
  19. E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006).
    [CrossRef]
  20. T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
    [CrossRef]
  21. W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
    [CrossRef]
  22. M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
    [CrossRef]
  23. M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
    [CrossRef]
  24. Schneider GmbH & Co.KG, “PMD 100-T—Phase measuring deflectometry,” http://www.schneider-om.com/en/products/ophthalmics/measuring/pmd-100-t.html (accessed 21 February 2013).
  25. A. Schulze and E. Dietrich, “Statistical methods for machine and process qualification,” Carl Hanser Verlag GmbH & CO. KG (2009).
  26. S. Kammel, “Deflectometrical analysis of specular reflecting free form surfaces,” Ph.D. thesis (Universitätsverlag Karlsruhe, 2005).
  27. A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).
  28. B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).
  29. M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

2013 (2)

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

2012 (3)

M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

2011 (2)

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

2010 (2)

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

2009 (1)

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

2008 (2)

T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
[CrossRef]

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

2006 (2)

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006).
[CrossRef]

2004 (1)

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[CrossRef]

1998 (1)

Acosta, E.

Barberi, R.

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

Blendowske, R.

Blumel, T.

Boucher, W.

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

Burow, R.

Chamadoira, S.

De Santo, M. P.

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

DeConinck, K.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Dietrich, E.

A. Schulze and E. Dietrich, “Statistical methods for machine and process qualification,” Carl Hanser Verlag GmbH & CO. KG (2009).

Dubois, X.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Ducoli, P.

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

Elssner, K. E.

Eppig, T.

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
[CrossRef]

T. Eppig and A. Langenbucher, “Measurement systems for intraocular lenses. Part I—A comprehensive overview on techniques and devices,” in Global CONTACT (MediaWelt GmbH, 2011), pp. 36–39, http://de.calameo.com/read/0001260654f441abc6333 .

Faber, C.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

Gatinel, D.

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

Gillner, M.

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

Häusler, G.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[CrossRef]

Hough, T.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Hutsebaut, X.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Hybl, O.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

Jäger, Z. K. J.

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

Janunts, E.

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

Joannes, L.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Kaminski, J.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[CrossRef]

Kammel, S.

S. Kammel, “Deflectometrical analysis of specular reflecting free form surfaces,” Ph.D. thesis (Universitätsverlag Karlsruhe, 2005).

Kannengiesser, M.

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

Knauer, M. C.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[CrossRef]

Langenbucher, A.

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
[CrossRef]

T. Eppig and A. Langenbucher, “Measurement systems for intraocular lenses. Part I—A comprehensive overview on techniques and devices,” in Global CONTACT (MediaWelt GmbH, 2011), pp. 36–39, http://de.calameo.com/read/0001260654f441abc6333 .

Ligot, R.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Lindlein, N.

Löffler, A.

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

Lombardo, G.

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

Lombardo, M.

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

Pfund, J.

Richter, C.

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

Saoul, B.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Sauer, T.

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

Scholz, K.

T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
[CrossRef]

Schulze, A.

A. Schulze and E. Dietrich, “Statistical methods for machine and process qualification,” Carl Hanser Verlag GmbH & CO. KG (2009).

Schwider, J.

Seitz, B.

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

Serrao, S.

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

Speck, A.

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

Talu, M.

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

Talu, S.

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

Van Donink, P.

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Velghe, S.

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

Wattellier, B.

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

Zelzer, B.

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

Zhu, Z.

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

Cont. Lens Anterior Eye (1)

L. Joannes, T. Hough, X. Hutsebaut, X. Dubois, R. Ligot, B. Saoul, P. Van Donink, and K. DeConinck, “The reproducibility of a new power mapping instrument based on the phase shifting Schlieren method for the measurement of spherical and toric contact lenses,” Cont. Lens Anterior Eye 33, 3–8 (2010).
[CrossRef]

Curr. Eye Res. (2)

A. Langenbucher, T. Eppig, B. Seitz, and E. Janunts, “Customized aspheric IOL design by raytracing through the eye containing quadric surfaces,” Curr. Eye Res. 36, 637–646 (2011).
[CrossRef]

Z. Zhu, E. Janunts, T. Eppig, T. Sauer, and A. Langenbucher, “Tomography-based customized IOL calculation model,” Curr. Eye Res. 36, 579–589 (2011).
[CrossRef]

DgaO Proc. (1)

A. Speck, B. Zelzer, A. Langenbucher, and T. Eppig, “Deflectometry for surface inspection and shape fidelity analysis for manufacturing and polishing of safety spectacle molds,” DgaO Proc. 113, 30 (2012).

J. Cataract Refract. Surg. (2)

M. Lombardo, M. P. De Santo, G. Lombardo, R. Barberi, and S. Serrao, “Analysis of intraocular lens surface properties with atomic force microscopy,” J. Cataract Refract. Surg. 32, 1378–1384 (2006).
[CrossRef]

M. Lombardo, S. Talu, M. Talu, S. Serrao, and P. Ducoli, “Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy,” J. Cataract Refract. Surg. 36, 1573–1578 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Ophthalmic Physiolog. Opt. (1)

T. Eppig, K. Scholz, and A. Langenbucher, “Assessing the optical performance of multifocal (diffractive) intraocular lenses,” Ophthalmic Physiolog. Opt. 28, 467–474 (2008).
[CrossRef]

Ophthalmologe (1)

M. Gillner, A. Langenbucher, and T. Eppig, “Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA (Invent ZO),” Ophthalmologe 109, 263–270 (2012).

Opt. Lett. (1)

Proc. SPIE (2)

W. Boucher, S. Velghe, B. Wattellier, and D. Gatinel, “Intraocular lens characterization using a quadri-wave lateral shearing interferometer wave front sensor” Proc. SPIE 7102, 71020Q (2008).
[CrossRef]

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[CrossRef]

Tm.Tech. Mess. (1)

M. C. Knauer, C. Richter, O. Hybl, J. Kaminski, C. Faber, and G. Häusler, “Deflectometry rivals interferometry—Deflektometrie macht der Interferometrie Konkurrenz,” Tm.Tech. Mess. 76, 175–181 (2009).
[CrossRef]

Z. Med. Phys. (3)

M. Kannengiesser, Z. Zhu, A. Langenbucher, and E. Janunts, “Evaluation of free-form IOL topographies by clinically available topographers,” Z. Med. Phys. 22, 215–223 (2012).
[CrossRef]

B. Zelzer, A. Speck, A. Langenbucher, and T. Eppig, “Theoretical model for design and analysis of protectional eyewear,” Z. Med. Phys. 23, 120–128 (2013).

T. Eppig, M. Gillner, Z. K. J. Jäger, A. Löffler, and A. Langenbucher, “Biomechanical eye model and measurement setup for investigating accommodating intraocular lenses,” Z. Med. Phys. 23, 144–152 (2013).

Other (13)

Lambda-X SA, “CURV—Radius of curvature. Product sheet,” http://www.lambda-x.com/documents/LX-CURV.pdf (accessed 8 March 2013).

Schneider GmbH & Co.KG, “PMD 100-T—Phase measuring deflectometry,” http://www.schneider-om.com/en/products/ophthalmics/measuring/pmd-100-t.html (accessed 21 February 2013).

A. Schulze and E. Dietrich, “Statistical methods for machine and process qualification,” Carl Hanser Verlag GmbH & CO. KG (2009).

S. Kammel, “Deflectometrical analysis of specular reflecting free form surfaces,” Ph.D. thesis (Universitätsverlag Karlsruhe, 2005).

Trioptics GmbH, “Flexible and reliable wavefront measurement,” http://www.trioptics.com/wavemaster/description.php (accessed 21 February 2013).

Optocraft GmbH, “SHSOphthalmic autoROC—Shape and surface testing of intra ocular lenses and contact lenses,” http://www.optocraft.de/products/SHSautoROC/index.en.php (accessed 21 February 2013).

S. A. Phasics, “Kaleo-R IOL: Surface characterization for ophthalmologic lenses industry,” http://www.phasicscorp.com/products/kaleo-range/kaleo-r-iol.html (accessed March 2013).

Trioptics GmbH, “OptiSpheric—the industry’s standard for lens testing. Product sheet,” http://www.trioptics.de/pdfs/OptiSpheric_E_2006.pdf (accessed March 2013).

LAMBDA-X, “NIMO TR0815—refractive intraocular lens power mapper and wavefront analyzer. Product sheet,” http://www.lambda-x.com/documents/LX-TR0815.pdf (accessed 3/2013).

Rotlex (1994) Ltd., “Introducing the IOLA PLUS lens analyzer,” http://www.rotlex.com/IolaPlus.asp (accessed 21 February 2013).

Rotlex (1994) Ltd., “IOLA—Introducing the IOLA MultiFocal. Product sheet,” http://www.rotlex.com/IolaMF.asp (accessed February 2013).

S. A. Phasics, “Kaleo-i: Complete and fast accurate IOL quality control,” http://www.phasicscorp.com/products/kaleo-range/kaleo-i.html (accessed 3/2013).

T. Eppig and A. Langenbucher, “Measurement systems for intraocular lenses. Part I—A comprehensive overview on techniques and devices,” in Global CONTACT (MediaWelt GmbH, 2011), pp. 36–39, http://de.calameo.com/read/0001260654f441abc6333 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Measurement of a spherical IOL with an ROC of 20 mm. The entire measurement field with 1280×960 pixel camera resolution was used. The measured IOL surface is marked in gray color (bright, optical part; dark, haptic). The outer and biggest part of the IOL is later used for the haptic. Overexposed regions in the FOV are colored in pink.

Fig. 2.
Fig. 2.

Commercial aspherical IOL HOYA AF-1 NY-60 with a blue blocker and a power of 24.50 D.

Fig. 3.
Fig. 3.

Deviation of the spherical IOL with an ROC of 20 mm and a spherical fit. The cross section is shown along the dashed line. The measurements were not smoothed.

Fig. 4.
Fig. 4.

False color plots of the F1 to F3 freeform IOL target versus actual comparison (from left to right).

Fig. 5.
Fig. 5.

Deviation plot of the commercial aspherical IOL Hoya AF-1 NY-60. Fitted design data was subtracted from the measured aspheric topography.

Fig. 6.
Fig. 6.

Measurement grid of the commercial IOL. Note the bad spots due to the blow forming and the fast index matching.

Fig. 7.
Fig. 7.

Deflectometric measurements of the commercial Hoya IOLs. The backsides were aligned on an index matching pad with liquid matching gel. The sinusoidal projected pattern is visible.

Tables (4)

Tables Icon

Table 1. Accuracy Measurement with a Spherical IOL with ROC=10mm

Tables Icon

Table 2. Repeatability Measurement with a Spherical IOL with ROC=10mm

Tables Icon

Table 3. Analysis of the Spherical IOL Topographies

Tables Icon

Table 4. Analysis of the Freeform IOL Topographies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

bias=|r¯rdesign|,
Power in salinePs=nsf=ns·(nIOLns)ns·r;1f=nnn·rwithnIOL=1.492,ns=1.336.
bias=|r¯rdesign|withrdesign=10.0mm,r¯=9,987mm,andbias13μm.

Metrics