Abstract

Stereotactically placed guidewires are used for indicating the location of a nonpalpable carcinoma in breast-conserving surgery. Pathologists use the end of the embedded guidewire to guide sectioning during intraoperative margin assessment, but they do not currently have a tool to indicate the location of the guidewire end for informed sectioning. We present analysis and experimental testing of two optical methods for localizing the end of an embedded fiber-optic guidewire: the first uses irradiance emitted from the fiber to indicate the location of the guidewire end, while the second system uses the fiber optic to create a photoacoustic pulse for localization. Both systems locate the end of the guidewire within ±5mm, which ensures that the lesion of interest is bisected during sectioning. The accuracy of the irradiance-based beacon is influenced by standard margin paints, so the photoacoustic beacon proved more useful under current tissue-handling protocols.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
    [CrossRef]
  2. C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
    [CrossRef]
  3. J. S. Suri and R. M. Rangayyan, Society of Photo-optical Instrumentation Engineers, Recent Advances in Breast Imaging, Mammography, and Computer-aided Diagnosis of Breast Cancer (SPIE, 2006).
  4. P. P. Rosen, Rosen’s Breast Pathology (Lippincott-Raven, 1997).
  5. L. Schiffhauer, Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642 (personal communications, 2006–2011).
  6. A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
    [CrossRef]
  7. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE/International Society for Optical Engineering, 2007).
  8. J. M. Ortega and W. C. Rheinboldt, “Iterative solution of nonlinear equations in several variables,” in Classics in Applied Mathematics (Society for Industrial and Applied Mathematics, 2000), pp. 181–239.
  9. N. Samama, Global Positioning: Technologies and Performance (Wiley-Interscience, 2008).
  10. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef]
  11. R. Eze and S. Kumar, “Light transport through thin scattering layers,” Appl. Opt. 49, 358–368 (2010).
    [CrossRef]
  12. N. Ren, J. Liang, X. Qu, L. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).
    [CrossRef]
  13. D. A. Boss, J. P. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
    [CrossRef]
  14. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef]
  15. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  16. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
  17. IOlympus NDT, “Ultrasonic transducers technical notes,” http://www.olympus-ims.com/data/File/panametrics/UT-technotes.en.pdf , pp. 40–49.
  18. R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
    [CrossRef]
  19. D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
    [CrossRef]

2011

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

2010

2009

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

2006

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

2002

1996

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef]

1995

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef]

Bandi, P.

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Barr, R. G.

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Berg, W.

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Boss, D. A.

Brawley, O.

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Chou, C.-H.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Culver, J. P.

Dayton, A.

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

DeBusschere, D.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

DeSantis, C.

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Dunn, A.

Eze, R.

Gougoutas-Fox, C.

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

Graham, R.

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Grajo, J. R.

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef]

Jemal, A.

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Ji, T.-L.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Kumar, S.

Li, L.

Liang, J.

Lu, B.

McLaughlin, G.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Mo, L.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Napolitano, D.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Ortega, J. M.

J. M. Ortega and W. C. Rheinboldt, “Iterative solution of nonlinear equations in several variables,” in Classics in Applied Mathematics (Society for Industrial and Applied Mathematics, 2000), pp. 181–239.

Page, D. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef]

Prahl, S.

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

Qu, X.

Rangayyan, R. M.

J. S. Suri and R. M. Rangayyan, Society of Photo-optical Instrumentation Engineers, Recent Advances in Breast Imaging, Mammography, and Computer-aided Diagnosis of Breast Cancer (SPIE, 2006).

Ren, N.

Rheinboldt, W. C.

J. M. Ortega and W. C. Rheinboldt, “Iterative solution of nonlinear equations in several variables,” in Classics in Applied Mathematics (Society for Industrial and Applied Mathematics, 2000), pp. 181–239.

Rim, A.

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Rosen, P. P.

P. P. Rosen, Rosen’s Breast Pathology (Lippincott-Raven, 1997).

Samama, N.

N. Samama, Global Positioning: Technologies and Performance (Wiley-Interscience, 2008).

Schiffhauer, L.

L. Schiffhauer, Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642 (personal communications, 2006–2011).

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef]

Siegel, R.

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Soot, L.

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

Steins, R.

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Stott, J.

Suri, J. S.

J. S. Suri and R. M. Rangayyan, Society of Photo-optical Instrumentation Engineers, Recent Advances in Breast Imaging, Mammography, and Computer-aided Diagnosis of Breast Cancer (SPIE, 2006).

Tian, J.

Troy, T. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE/International Society for Optical Engineering, 2007).

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

Ward, E.

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Wolf, R.

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef]

Appl. Opt.

Cancer J. Clin.

R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Cancer J. Clin. 61, 408–418 (2011).
[CrossRef]

Comput. Methods Programs Biomed.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef]

J. Biomed. Opt.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef]

A. Dayton, L. Soot, R. Wolf, C. Gougoutas-Fox, and S. Prahl, “Light-guided lumpectomy: device and case report,” J. Biomed. Opt. 15, 061706 (2010).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Ultrasonics

D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics 44, e43–e46 (2006).
[CrossRef]

Ultrasound Quarterly

R. G. Barr, A. Rim, R. Graham, W. Berg, and J. R. Grajo, “Speed of sound imaging: improved image quality in breast sonography,” Ultrasound Quarterly 25, 141–144 (2009).
[CrossRef]

Other

L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

IOlympus NDT, “Ultrasonic transducers technical notes,” http://www.olympus-ims.com/data/File/panametrics/UT-technotes.en.pdf , pp. 40–49.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE/International Society for Optical Engineering, 2007).

J. M. Ortega and W. C. Rheinboldt, “Iterative solution of nonlinear equations in several variables,” in Classics in Applied Mathematics (Society for Industrial and Applied Mathematics, 2000), pp. 181–239.

N. Samama, Global Positioning: Technologies and Performance (Wiley-Interscience, 2008).

J. S. Suri and R. M. Rangayyan, Society of Photo-optical Instrumentation Engineers, Recent Advances in Breast Imaging, Mammography, and Computer-aided Diagnosis of Breast Cancer (SPIE, 2006).

P. P. Rosen, Rosen’s Breast Pathology (Lippincott-Raven, 1997).

L. Schiffhauer, Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642 (personal communications, 2006–2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Example of an eccentric excision. The dissection protocol may dictate cutting along line (2), but this could indicate clear margins unless the lesion location was reassembled from the dissected slices. Knowledge of the guidewire position would indicate that cutting along line (1) would present the closer margin and simplified interpretation.

Fig. 2.
Fig. 2.

NSRT software model showing the nominal tissue composition used to test the effects of heterogeneity on the algorithm accuracy.

Fig. 3.
Fig. 3.

Plot of modeled error in position (in millimeters) versus ellipticity.

Fig. 4.
Fig. 4.

Plot of irradiance distribution on the surface of a specimen (red outline) for the fiber optic placed 3, 2, 1, and 0.5 MFP from the margin. 1 MFP in this case is 1mm. The sample was 20mm long and 4mm tall. Notice that the irradiance distribution looks like an embedded point source for distances greater than 1 MFP and illustrates that if the beacon is visible as a concentrated spot, the margin is closer than acceptable practices.

Fig. 5.
Fig. 5.

Experimental system layout for pig mammary trials of optical beacon. (a) Top view, (b) side view, and (c) side view of tissue specimen geometry. The * denotes the different detection points.

Fig. 6.
Fig. 6.

Photoacoustic beacon system layout.

Fig. 7.
Fig. 7.

Schematic of photoacoustic beacon experimental setup.

Tables (2)

Tables Icon

Table 1. Modeled Error Resulting From the Optical Beacon Algorithm for Various Nonsymmetric Geometriesa

Tables Icon

Table 2. Photoacoustic Beacon Data With Calculated Beacon Locations and Errora

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

If=I04πDrexp(rμeff),
rN=rN1f(rN1)f(rN1).
r0=1μeffln(IfI0).

Metrics