Abstract

In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kozacki, “On resolution and viewing of holographic image generated by 3D holographic display,” Opt. Express 18, 27118–27129 (2010).
    [CrossRef]
  2. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
    [CrossRef]
  3. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18, 8806–8815 (2010).
    [CrossRef]
  4. Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, H.-X. He, B.-C. Chen, H.-Z. Wang, H. Zheng, and Y. Yu, “Fraunhofer computer-generated hologram for diffused 3D scene in Fresnel region,” Opt. Lett. 36, 2128–2130 (2011).
    [CrossRef]
  5. T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9, 120006 (2011).
    [CrossRef]
  6. J.-T. Kim, “Kinoform design and applications,” presented at The First Korea-Japan Workshop on Digital Holography and Information Photonics DHIP 2011, Seoul, Korea, 9–12 November2011.
  7. T. Nomura and Y. Mori, “Digital holographic binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper DWB5.
  8. Y. Mori and T. Nomura, “Optical reconstruction of digital hologram using spatial light modulator for binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2011), paper DTuC7.
  9. Y. Mori and T. Nomura, “Adjustment of the reconstruction distance on the three-dimensional display using digital holography,” presented at 1st Laser Display Conference (LDC’12), Yokohama, Japan, 26–27 April2012.
  10. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  11. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
    [CrossRef]
  12. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef]
  13. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  14. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
    [CrossRef]
  15. W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
    [CrossRef]
  16. T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).
    [CrossRef]
  17. M. Imbe and T. Nomura, “Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave,” Appl. Opt. 52, A161–A166 (2013).
    [CrossRef]
  18. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
    [CrossRef]
  19. P. Xia, Y. Shimozato, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography,” Appl. Opt. 52, A210–A215 (2013).
    [CrossRef]
  20. M. A. Araize-Esquivel, L. Martínez-León, B. Javidi, P. Andréd, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot efffect,” Appl. Opt. 50, B96–B101 (2011).
    [CrossRef]
  21. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002).
    [CrossRef]
  22. T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.
  23. A. M. Kowalevicz, T. Ko, I. Hartl, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353 (2002).
    [CrossRef]
  24. Y. Yasuno, S. Makita, Y. Satou, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  25. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [CrossRef]
  26. J. Weng, J. Zhong, and C. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Opt. Express 16, 21971–21981 (2008).
    [CrossRef]

2013 (2)

2011 (3)

2010 (3)

2009 (3)

2008 (3)

2002 (4)

2000 (1)

1997 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Andréd, P.

Araize-Esquivel, M. A.

Awatsuji, Y.

Bertaux, N.

Chang, C.-C.

W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
[CrossRef]

Chen, B.-C.

Dong, J.-W.

Ferraro, P.

Finizio, A.

Frauel, Y.

Fujimoto, J. G.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Hartl, I.

He, H.-X.

Hsieh, W.-T.

W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
[CrossRef]

Hu, C.

Imbe, M.

Itoh, M.

Javidi, B.

Kakue, T.

Katz, B.

Kim, J.-T.

J.-T. Kim, “Kinoform design and applications,” presented at The First Korea-Japan Workshop on Digital Holography and Information Photonics DHIP 2011, Seoul, Korea, 9–12 November2011.

Ko, T.

Kowalevicz, A. M.

Kozacki, T.

Kubota, T.

Kuo, M.-K.

W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
[CrossRef]

Lancis, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Liu, Y.-Z.

Makita, S.

Martínez-León, L.

Matoba, O.

Matsushima, K.

Memmolo, P.

Mori, Y.

T. Nomura and Y. Mori, “Digital holographic binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper DWB5.

Y. Mori and T. Nomura, “Optical reconstruction of digital hologram using spatial light modulator for binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2011), paper DTuC7.

Y. Mori and T. Nomura, “Adjustment of the reconstruction distance on the three-dimensional display using digital holography,” presented at 1st Laser Display Conference (LDC’12), Yokohama, Japan, 26–27 April2012.

Nakatsuji, T.

Näsänen, R.

Naughton, T. J.

Nishio, K.

Nitanai, E.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
[CrossRef]

T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.

Nomura, T.

M. Imbe and T. Nomura, “Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave,” Appl. Opt. 52, A161–A166 (2013).
[CrossRef]

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
[CrossRef]

Y. Mori and T. Nomura, “Adjustment of the reconstruction distance on the three-dimensional display using digital holography,” presented at 1st Laser Display Conference (LDC’12), Yokohama, Japan, 26–27 April2012.

Y. Mori and T. Nomura, “Optical reconstruction of digital hologram using spatial light modulator for binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2011), paper DTuC7.

T. Nomura and Y. Mori, “Digital holographic binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper DWB5.

T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.

Numata, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
[CrossRef]

T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.

Okamura, M.

Paturzo, M.

Pedrini, G.

Pu, Y.-Y.

Rosen, J.

Satou, Y.

Shaked, N. T.

Shimobaba, T.

Shimozato, Y.

Suzuki, H.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

Tahara, T.

Tajahuerce, E.

Tiziani, H. J.

Ura, S.

Wang, H.-Z.

Weng, J.

Xia, P.

Yamaguchi, I.

Yamaguchi, T.

Yasuno, Y.

Yatagai, T.

Yau, H. F.

W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
[CrossRef]

Yoshikawa, H.

Yoshino, K.

T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.

Yu, Y.

Zhang, T.

Zheng, H.

Zhong, J.

Appl. Opt. (9)

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
[CrossRef]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
[CrossRef]

P. Xia, Y. Shimozato, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography,” Appl. Opt. 52, A210–A215 (2013).
[CrossRef]

M. A. Araize-Esquivel, L. Martínez-León, B. Javidi, P. Andréd, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot efffect,” Appl. Opt. 50, B96–B101 (2011).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002).
[CrossRef]

T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).
[CrossRef]

M. Imbe and T. Nomura, “Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave,” Appl. Opt. 52, A161–A166 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Chin. Opt. Lett. (1)

Opt. Express (5)

Opt. Lett. (3)

Opt. Rev. (2)

W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009).
[CrossRef]

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

Other (5)

T. Nomura, K. Yoshino, T. Numata, and E. Nitanai, “Profilometry and reflectmetry using low-coherent digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper JMA25.

J.-T. Kim, “Kinoform design and applications,” presented at The First Korea-Japan Workshop on Digital Holography and Information Photonics DHIP 2011, Seoul, Korea, 9–12 November2011.

T. Nomura and Y. Mori, “Digital holographic binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2010), paper DWB5.

Y. Mori and T. Nomura, “Optical reconstruction of digital hologram using spatial light modulator for binocular stereopsis,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2011), paper DTuC7.

Y. Mori and T. Nomura, “Adjustment of the reconstruction distance on the three-dimensional display using digital holography,” presented at 1st Laser Display Conference (LDC’12), Yokohama, Japan, 26–27 April2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Optical setup of low-coherence digital holography, based on Michelson interferometer.

Fig. 2.
Fig. 2.

Concept of the TP method: (a) nonsignal processing and (b) threshold processing.

Fig. 3.
Fig. 3.

Relationship between the amplitude of reconstructions and the optical path difference in low-coherence digital holography: (a) the conceptual figure and (b) its profile.

Fig. 4.
Fig. 4.

Concept of the procedure in the PAP method: (a) original reconstructed images and (b) new elementary reconstructed images by the PAP process.

Fig. 5.
Fig. 5.

Optical setup for phase-shifting digital holography.

Fig. 6.
Fig. 6.

Recording object (Okame) (a) from front and (b) from side.

Fig. 7.
Fig. 7.

Evaluated area for the variance of the reconstructions.

Fig. 8.
Fig. 8.

Profile of the variance as a function of the threshold value.

Fig. 9.
Fig. 9.

Reconstructions of the TP method using (a) the complex amplitude distribution and (b) the phase distribution only.

Fig. 10.
Fig. 10.

Reconstructions of the PAP method using (a) the complex amplitude distribution and (b) the phase distribution only.

Fig. 11.
Fig. 11.

Reconstructions of high-coherence digital holography using (a) the complex amplitude distribution and (b) the phase distribution only.

Fig. 12.
Fig. 12.

Reconstructions of nonprocess hologram using (a) the complex amplitude distribution and (b) the phase distribution only.

Fig. 13.
Fig. 13.

Optical setup for visual evaluation.

Fig. 14.
Fig. 14.

Optical reconstructions of three holograms: (a) TP method, (b) PAP method, and (c) high-coherence digital holography.

Tables (2)

Tables Icon

Table 1. Variance of the Normalized Amplitude of the Reconstructions

Tables Icon

Table 2. Visual Evaluation of the Image Quality (Head Count)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U(X,Y)=exp(ikz)ikzO(x,y)R(x,y)exp[ik2z{(Xx)2+(Yy)2}]dxdy,
O(x,y)=i=1nOi(x,y),
s2=1Ni=1N(XiX¯)2,

Metrics