Abstract

Parallel on-axis two-step phase-shifting reflective point-diffraction interferometry for holographic phase microscopy based on Michelson architecture is proposed. A cube beamsplitter splits the object wave into two copies within the two arms. The reference wave is rebuilt by low-pass filtering with a pinhole-masked mirror. Both object and reference waves are split into two beams by a grating in a 4f imaging system; thus, two interferograms with quadrature phase-shift can be acquired simultaneously with the aid of polarization elements. The approach has the merit of nanometers-scale phase stability over hours due to its quasi-common-path geometry. It can make full use of camera spatial bandwidth while its temporal resolution is as fast as the camera frame rate. Phase imaging on microscale specimen is implemented, and the experimental results demonstrate that the proposed approach is suitable for investigating dynamic processes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  2. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
    [CrossRef]
  3. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowski, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [CrossRef]
  4. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000).
    [CrossRef]
  5. T. Colomb, E. Cuche, F. Charrire, J. Kühn, N. Aspert, F. Monfort, P. Marquet, and C. Despeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [CrossRef]
  6. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).
  7. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef]
  8. B. Kemper and G. V. Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [CrossRef]
  9. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef]
  10. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
    [CrossRef]
  11. D. G. Abdelsalam and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
    [CrossRef]
  12. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
    [CrossRef]
  13. W. J. Qu, C. O. Choo, Y. J. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50, 886–890 (2011).
    [CrossRef]
  14. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
    [CrossRef]
  15. Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
    [CrossRef]
  16. B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
    [CrossRef]
  17. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [CrossRef]
  18. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
    [CrossRef]
  19. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
    [CrossRef]
  20. C. Mercer and K. Creath, “Liquid crystal point diffraction interferometer,” Opt. Lett. 19, 916–918 (1994).
    [CrossRef]
  21. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer” Opt. Express 13, 1885–1891 (2005).
    [CrossRef]
  22. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [CrossRef]
  23. R. M. Neal and J. C. Wyant, “Polarization phase-shifting point-diffraction interferometer,” Appl. Opt. 45, 3463–3476 (2006).
    [CrossRef]
  24. D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Appl. Opt. 50, 6153–6161 (2011).
    [CrossRef]
  25. S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).
    [CrossRef]
  26. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
    [CrossRef]
  27. T. Kakue, S. Itoh, P. Xia, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot femtosecond-pulsed phase-shifting digital holography,” Opt. Express 20, 20286–20291 (2012).
    [CrossRef]
  28. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
    [CrossRef]
  29. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005).
    [CrossRef]
  30. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
    [CrossRef]
  31. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878 (2010).
    [CrossRef]
  32. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284, 4136–4140 (2011).
    [CrossRef]
  33. T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47, 4787–4792 (2008).
    [CrossRef]
  34. N. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one shot phase-shifting interferometry,” Opt. Express 16, 19330–19341 (2008).
    [CrossRef]
  35. G. Rodriguez-Zurita, C. Meneses-Fabian, N. Toto-Arellano, J. Vazquez-Castillo, and C. Robledo-Sánchez, “One-shot phaseshifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16, 7806–7817 (2008).
    [CrossRef]
  36. J. Min, B. Yao, P. Gao, R. Guo, J. Zheng, and T. Ye, “Parallel phase-shifting interferometry based on Michelson-like architecture,” Appl. Opt. 49, 6612–6616 (2010).
    [CrossRef]
  37. R. Guo, B. Yao, P. Gao, J. Min, J. Zheng, and T. Ye, “Reflective point-diffraction microscopic interferometer with long-term stability,” Chin. Opt. Lett. 9, 120002 (2011).
    [CrossRef]
  38. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
    [CrossRef]
  39. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
    [CrossRef]
  40. V. Ronchi, “On the phase grating interferometer,” Appl. Opt. 4, 1041–1042 (1965).
    [CrossRef]
  41. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  42. C. Meneses-Fabian and G. Rodriguez-Zurita, “Carrier fringes in the two-aperture common-path interferometer,” Opt. Lett. 36, 642–644 (2011).
    [CrossRef]
  43. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
    [CrossRef]
  44. M. A. Herraez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847 (1996).
    [CrossRef]
  45. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
    [CrossRef]
  46. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16, 12227–12238 (2008).
    [CrossRef]

2012 (2)

2011 (13)

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
[CrossRef]

C. Meneses-Fabian and G. Rodriguez-Zurita, “Carrier fringes in the two-aperture common-path interferometer,” Opt. Lett. 36, 642–644 (2011).
[CrossRef]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[CrossRef]

D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Appl. Opt. 50, 6153–6161 (2011).
[CrossRef]

S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).
[CrossRef]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[CrossRef]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284, 4136–4140 (2011).
[CrossRef]

R. Guo, B. Yao, P. Gao, J. Min, J. Zheng, and T. Ye, “Reflective point-diffraction microscopic interferometer with long-term stability,” Chin. Opt. Lett. 9, 120002 (2011).
[CrossRef]

W. J. Qu, C. O. Choo, Y. J. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50, 886–890 (2011).
[CrossRef]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[CrossRef]

Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
[CrossRef]

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

D. G. Abdelsalam and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
[CrossRef]

2010 (5)

2009 (1)

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

2008 (7)

B. Kemper and G. V. Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
[CrossRef]

T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47, 4787–4792 (2008).
[CrossRef]

N. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one shot phase-shifting interferometry,” Opt. Express 16, 19330–19341 (2008).
[CrossRef]

G. Rodriguez-Zurita, C. Meneses-Fabian, N. Toto-Arellano, J. Vazquez-Castillo, and C. Robledo-Sánchez, “One-shot phaseshifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16, 7806–7817 (2008).
[CrossRef]

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16, 12227–12238 (2008).
[CrossRef]

2006 (8)

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

R. M. Neal and J. C. Wyant, “Polarization phase-shifting point-diffraction interferometer,” Appl. Opt. 45, 3463–3476 (2006).
[CrossRef]

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowski, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrire, J. Kühn, N. Aspert, F. Monfort, P. Marquet, and C. Despeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[CrossRef]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef]

2005 (4)

2000 (1)

1999 (1)

1996 (1)

1994 (1)

1965 (1)

Abdelsalam, D. G.

Aspert, N.

Asundi, A.

Awatsuji, Y.

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Badizadegan, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Bally, G. V.

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

B. Kemper and G. V. Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef]

Berns, M. W.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

Best-Popescu, C. A.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Brock, N.

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Burton, D. R.

Cai, L. Z.

Callens, N.

Campos, J.

Charrière, F.

Charrire, F.

Chen, Z.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

Choo, C. O.

Clark, R. L.

Clegg, D. B.

Colomb, T.

Creath, K.

Cuche, E.

Dasari, R. R.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef]

Debnath, S. K.

Depeursinge, C.

Despeursinge, C.

Ding, H.

Dirksen, D.

Dong, G. Y.

Dubois, F.

Ehlers, M. D.

Emery, Y.

Feld, M. S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef]

Ferraro, P.

Finizio, A.

Gao, P.

Genc, S.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

Gillette, M. U.

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

Grilli, S.

Guo, R.

Harder, I.

Hayes, J.

Herraez, M. A.

Iemmi, C.

Ikeda, T.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef]

Itoh, S.

Iwai, H.

Jenness, N. J.

Kakue, T.

Kaneko, A.

Kemper, B.

Kiire, T.

Kim, D.

Kim, M. K.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[CrossRef]

Koyama, T.

Kubota, T.

Kühn, J.

Lalor, M. J.

Langehanenberg, P.

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Lee, B.

Lee, S.-Y.

Lim, Y.

Lo, C.-M.

Magistretti, P. J.

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Mann, C. J.

Mantel, K.

Marquet, P.

Massig, J. H.

Matoba, O.

Meneses-Fabian, C.

Meng, X. F.

Mercer, C.

Merola, F.

Miccio, L.

Millerd, J.

Millet, L. J.

Min, J.

Mir, M.

Miwa, M.

Mohanty, S.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

Monfort, F.

Montfort, F.

Moreno, A.

Murata, S.

Nakadate, S.

Neal, R. M.

Nercissian, V.

Newpher, T. M.

Nishio, K.

Nitanai, E.

Nomura, T.

North-Morris, M.

Novak, M.

Numata, T.

Park, Y. K.

Paturzo, M.

Popescu, G.

Qu, W. J.

Rappaz, B.

Rinehart, M. T.

Robledo-Sánchez, C.

Rodriguez-Zurita, G.

Rogers, J. A.

Romme, C. E.

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Ronchi, V.

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Schockaert, C.

Shaked, N. T.

Shen, X. X.

Shibuya, M.

Stadelmaier, A.

Tahara, T.

Toto-Arellano, N.

Unarunotai, S.

Ura, S.

Vazquez-Castillo, J.

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

von Bally, G.

Wang, Y. R.

Wang, Z.

Wax, A.

Weible, K.

Wyant, J.

Wyant, J. C.

Xia, P.

Xu, X. F.

Yamashita, Y.

Yamauchi, T.

Yang, X. L.

Yao, B.

Ye, T.

Yonesaka, R.

Yourassowski, C.

Yu, L.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[CrossRef]

Yu, Y. J.

Zhang, J.

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

Zheng, J.

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Appl. Opt. (18)

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

T. Colomb, E. Cuche, F. Charrire, J. Kühn, N. Aspert, F. Monfort, P. Marquet, and C. Despeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[CrossRef]

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).

B. Kemper and G. V. Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef]

D. G. Abdelsalam and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
[CrossRef]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
[CrossRef]

W. J. Qu, C. O. Choo, Y. J. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50, 886–890 (2011).
[CrossRef]

R. M. Neal and J. C. Wyant, “Polarization phase-shifting point-diffraction interferometer,” Appl. Opt. 45, 3463–3476 (2006).
[CrossRef]

D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Appl. Opt. 50, 6153–6161 (2011).
[CrossRef]

M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
[CrossRef]

T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47, 4787–4792 (2008).
[CrossRef]

J. Min, B. Yao, P. Gao, R. Guo, J. Zheng, and T. Ye, “Parallel phase-shifting interferometry based on Michelson-like architecture,” Appl. Opt. 49, 6612–6616 (2010).
[CrossRef]

V. Ronchi, “On the phase grating interferometer,” Appl. Opt. 4, 1041–1042 (1965).
[CrossRef]

M. A. Herraez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847 (1996).
[CrossRef]

Chin. Opt. Lett. (1)

J. Biomed. Opt. (2)

B. Kemper, A. Vollmer, C. E. Romme, J. Schnekenburger, and G. V. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Opt. Commun. (1)

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284, 4136–4140 (2011).
[CrossRef]

Opt. Express (11)

C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer” Opt. Express 13, 1885–1891 (2005).
[CrossRef]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[CrossRef]

Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
[CrossRef]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
[CrossRef]

N. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one shot phase-shifting interferometry,” Opt. Express 16, 19330–19341 (2008).
[CrossRef]

G. Rodriguez-Zurita, C. Meneses-Fabian, N. Toto-Arellano, J. Vazquez-Castillo, and C. Robledo-Sánchez, “One-shot phaseshifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16, 7806–7817 (2008).
[CrossRef]

T. Kakue, S. Itoh, P. Xia, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot femtosecond-pulsed phase-shifting digital holography,” Opt. Express 20, 20286–20291 (2012).
[CrossRef]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
[CrossRef]

C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[CrossRef]

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowski, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
[CrossRef]

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16, 12227–12238 (2008).
[CrossRef]

Opt. Lett. (11)

C. Meneses-Fabian and G. Rodriguez-Zurita, “Carrier fringes in the two-aperture common-path interferometer,” Opt. Lett. 36, 642–644 (2011).
[CrossRef]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
[CrossRef]

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000).
[CrossRef]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

C. Mercer and K. Creath, “Liquid crystal point diffraction interferometer,” Opt. Lett. 19, 916–918 (1994).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[CrossRef]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[CrossRef]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[CrossRef]

S. K. Debnath and Y. K. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

Supplementary Material (4)

» Media 1: MOV (445 KB)     
» Media 2: MOV (303 KB)     
» Media 3: AVI (791 KB)     
» Media 4: AVI (485 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for dynamic QPI with parallel on-axis point-diffraction PSI. P 1 P 4 , linear polarizers; BE, beam expander; MO, microscope objective; IP, image plane; L 1 L 5 , achromatic lenses with focal lengths of f 1 = 90 mm , f 2 = f 3 = 300 mm , and f 4 = f 5 = 100 mm ; NPBS, nonpolarizing cube beamsplitter; QW, quarter-wave plate; G , Ronchi phase grating with period of 15 μm; M, M 1 , mirrors; M 2 , pinhole-mask mirror with diameter of 20 μm. Inset: O and R present the polarization orientations of the object and reference waves, respectively.

Fig. 2.
Fig. 2.

Experimental results of a PMMA bead suspended in fluid water. (a) Two quadrature phase-shifted interferograms (dynamic process: Media 1) and (b) reconstructed OPD (unit: nanometer) of the PMMA bead (dynamic process: Media 2).

Fig. 3.
Fig. 3.

Experimental results of a phase step. (a) Reconstructed phase map of the phase-step and (b) OPD along the cut-line in (a), and compared with that obtained by WLI.

Fig. 4.
Fig. 4.

Stability and repeatability test for the proposed setup. The repeatability is defined as the STD of the difference between the i th measurement of OPD i ( x , y ) and the ( i 1 )th measurement of OPD i 1 ( x , y ) over all points of the FOV.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = K exp ( i 2 π x / Λ ) A [ x λ ( f l ) / Λ , y ] + K exp ( i 2 π x / Λ ) A [ x + λ ( f l ) / Λ , y ] ,
O = IFT { FT { τ r O test } τ t cos θ } · [ 1 0 ] R = IFT { FT { τ t O test } T PH τ r sin θ } · [ 0 1 ] .
I 1 ( x , y ) = I O + I R + 2 I O I R cos [ φ ( x , y ) ] I 2 ( x , y ) = I O + I R 2 I O I R sin [ φ ( x , y ) ] ,
4 I O I R cos 2 [ φ ( x , y ) ] = ( I 1 I O I R ) 2 4 I O I R sin 2 [ φ ( x , y ) ] = ( I 2 I O I R ) 2 .
I O ( x , y ) = I 1 + I 2 ( I 1 + I 2 ) 2 2 [ ( I 1 I R ) 2 + ( I 2 I R ) 2 ] 2 φ wr ( x , y ) = arctan ( I 2 I O I R I 1 I O I R ) .
O o = [ I o ( x , y ) ] 1 / 2 exp i φ wr ( x , y ) .
O r = IFT { FT { O o } · exp { i k z 1 ( λ ξ ) 2 ( λ η ) 2 } } .
φ t ( x , y ) = φ ( x , y ) φ b ( x , y ) .

Metrics