Abstract

An iterative adaptive weighted filtered backprojection (FBP) approach was applied to our photoacoustic imaging (PAI) of the optical absorption in biological tissues from limited-view data. By using an image-based adaptive weighted PAI reconstruction, we can modify the defect of the artifacts degrading the quality of the image. Results of numerical simulations demonstrated that the proposed algorithm was superior to FBP in terms of both accuracy and robustness to noise. Reconstructed images of biological tissues agreed well with the structures of the samples. The resolution of the PAI system with the proposed method was experimentally demonstrated to be better than 0.14 mm. By using the proposed method, the imaging quality of the PAI system can be improved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758–5767 (2008).
    [CrossRef]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [CrossRef]
  3. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Image-guided optical spectroscopy in diagnosis of osteoarthritis: a clinical study,” Biomed. Opt. Express 1, 74–86 (2010).
    [CrossRef]
  4. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [CrossRef]
  5. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  6. Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
    [CrossRef]
  7. B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).
    [CrossRef]
  8. L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).
  9. C. Tao and X. Liu, “Reconstruction of high quality photoacoustic tomography with a limited-view,” Opt. Express 18, 2760–2766 (2010).
    [CrossRef]
  10. J. Provost and F. Lesage, “The application of compressed sensing for photoacoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009).
    [CrossRef]
  11. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).
    [CrossRef]
  12. J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express 20, 16510–16523 (2012).
    [CrossRef]
  13. S. K. Patch, “Thermoacoustic tomography: consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305–2315 (2004).
    [CrossRef]
  14. J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
    [CrossRef]
  15. Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39, 6895–6899 (2012).
    [CrossRef]
  16. G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
    [CrossRef]
  17. D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
    [CrossRef]
  18. M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
    [CrossRef]
  19. H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
    [CrossRef]
  20. R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
    [CrossRef]
  21. G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
    [CrossRef]
  22. M. Xu and L. V. Wang, “Universal backprojection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
    [CrossRef]
  23. S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
    [CrossRef]
  24. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
    [CrossRef]
  25. D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).
  26. X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
    [CrossRef]
  27. S. Yang and D. Xing, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).
    [CrossRef]
  28. X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
    [CrossRef]
  29. L. Yao and H. Jiang, “Photoacoustic image reconstruction from few-detector and limited-angle data,” Biomed. Opt. Express 2, 2649–2654 (2011).
    [CrossRef]
  30. A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

2012

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express 20, 16510–16523 (2012).
[CrossRef]

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39, 6895–6899 (2012).
[CrossRef]

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

2011

L. Yao and H. Jiang, “Photoacoustic image reconstruction from few-detector and limited-angle data,” Biomed. Opt. Express 2, 2649–2654 (2011).
[CrossRef]

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
[CrossRef]

2010

2009

J. Provost and F. Lesage, “The application of compressed sensing for photoacoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009).
[CrossRef]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
[CrossRef]

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
[CrossRef]

2008

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758–5767 (2008).
[CrossRef]

2007

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

S. Yang and D. Xing, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).
[CrossRef]

2006

M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

2005

M. Xu and L. V. Wang, “Universal backprojection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

2004

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef]

S. K. Patch, “Thermoacoustic tomography: consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305–2315 (2004).
[CrossRef]

2003

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

2002

X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

1990

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Aguirre, A.

J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
[CrossRef]

Arridge, S. R.

Beard, P. C.

Bruder, H.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Burgholzer, P.

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
[CrossRef]

Burton, N. C.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Cox, B. T.

Danielsson, P. E.

M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
[CrossRef]

Diebold, G. J.

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Fain, S. B.

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

Flohr, T.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Gamelin, J. K.

J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
[CrossRef]

Gu, H. M.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Guo, H.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
[CrossRef]

Guo, W.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Guo, Z.

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).
[CrossRef]

Han, D.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Holmes, J. H.

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

Jiang, H.

Khan, M. I.

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Kostli, K. P.

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Lesage, F.

J. Provost and F. Lesage, “The application of compressed sensing for photoacoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009).
[CrossRef]

Li, C.

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).
[CrossRef]

Liang, D.

Liu, X.

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

C. Tao and X. Liu, “Reconstruction of high quality photoacoustic tomography with a limited-view,” Opt. Express 18, 2760–2766 (2010).
[CrossRef]

Ma, S.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
[CrossRef]

Ma, X.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Magnusson, M.

M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
[CrossRef]

Meng, J.

Morscher, S.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Ntziachristos, V.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Nuster, R.

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
[CrossRef]

O’Halloran, R. L.

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

Paltauf, G.

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Park, S. M.

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Patch, S. K.

S. K. Patch, “Thermoacoustic tomography: consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305–2315 (2004).
[CrossRef]

Peng, D.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

Provost, J.

J. Provost and F. Lesage, “The application of compressed sensing for photoacoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009).
[CrossRef]

Qin, C.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Raupach, R.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Razansky, D.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Sedlmair, M.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Sobel, E.

Song, L.

Stierstorfer, K.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Sunnegardh, J.

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
[CrossRef]

Tan, Y.

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

Tao, C.

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

C. Tao and X. Liu, “Reconstruction of high quality photoacoustic tomography with a limited-view,” Opt. Express 18, 2760–2766 (2010).
[CrossRef]

Taruttis, A.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Tian, J.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express 20, 16510–16523 (2012).
[CrossRef]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).
[CrossRef]

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758–5767 (2008).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

M. Xu and L. V. Wang, “Universal backprojection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Wang, X.

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
[CrossRef]

Wang, Y.

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

Wen, Z.

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

Wu, D.

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

Xiang, L. Z.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Xing, D.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

S. Yang and D. Xing, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).
[CrossRef]

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

M. Xu and L. V. Wang, “Universal backprojection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
[CrossRef]

Xu, Y.

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef]

X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
[CrossRef]

Yang, D.

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

Yang, D. W.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Yang, S.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
[CrossRef]

S. Yang and D. Xing, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).
[CrossRef]

Yang, S. H.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Yang, X.

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

Yao, L.

Yi, B.

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

Ying, L.

Yuan, Z.

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39, 6895–6899 (2012).
[CrossRef]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Image-guided optical spectroscopy in diagnosis of osteoarthritis: a clinical study,” Biomed. Opt. Express 1, 74–86 (2010).
[CrossRef]

Zeng, L.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Zhang, Q.

Zhu, Q.

J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
[CrossRef]

Acta Phys. Sin.

L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, and L. Zeng, “Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction techniques,” Acta Phys. Sin. 56, 3911–3917 (2007).

Appl. Opt.

Biomed. Opt. Express

Chin. Phys. B

D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21, 014301 (2012).
[CrossRef]

IEEE Trans. Med. Imaging

M. Magnusson, P. E. Danielsson, and J. Sunnegardh, “Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT,” IEEE Trans. Med. Imaging 25, 935–940 (2006).
[CrossRef]

J. Provost and F. Lesage, “The application of compressed sensing for photoacoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009).
[CrossRef]

J. Acoust. Soc. Am.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002).
[CrossRef]

J. Acta Opt. Sin.

D. Yang, D. Xing, Y. Wang, Y. Tan, and B. Yi, “Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques,” J. Acta Opt. Sin. 25, 772–776 (2005).

J. Appl. Phys.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106, 123104 (2009).
[CrossRef]

J. Biomed. Opt.

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).
[CrossRef]

Magn. Reson. Med.

R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132–139 (2008).
[CrossRef]

Med. Phys.

S. Yang and D. Xing, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).
[CrossRef]

X. Wang, Y. Xu, and M. Xu, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Med. Phys. 29, 2799–2801 (2002).
[CrossRef]

J. K. Gamelin, A. Aguirre, and Q. Zhu, “Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique,” Med. Phys. 38, 1503–1518 (2011).
[CrossRef]

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39, 6895–6899 (2012).
[CrossRef]

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758–5767 (2008).
[CrossRef]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Opt. Express

Phys. Med. Biol.

S. K. Patch, “Thermoacoustic tomography: consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305–2315 (2004).
[CrossRef]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009).
[CrossRef]

Phys. Rev. E

M. Xu and L. V. Wang, “Universal backprojection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
[CrossRef]

PLos ONE

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLos ONE 7, e30491 (2012).

Proc. SPIE

X. Liu, J. Tian, D. Han, W. Guo, D. Peng, X. Ma, C. Qin, and X. Yang, “Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging,” Proc. SPIE 8313, 83133Z (2012).
[CrossRef]

H. Bruder, R. Raupach, J. Sunnegardh, M. Sedlmair, K. Stierstorfer, and T. Flohr, “Adaptive iterative reconstruction,” Proc. SPIE 7961, 79610J (2011).
[CrossRef]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Science

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for PAI signal detection.

Fig. 2.
Fig. 2.

Images reconstructed from simulated data corresponding to the numerical phantom using (a) 30 detectors over 90°, with FBP; (b) 60 detectors over 135°, with FBP; (c) 120 detectors over 180°, with FBP; (d) 240 detectors over 360°, with FBP; (e) 30 detectors over 90°, with ART-FBP; (f) 60 detectors over 135°, with ART-FBP; (g) 120 detectors over 180°, with ART-FBP; (h) 240 detectors over 360°, with ART-FBP; (i) 30 detectors over 90°, with IAWFBP; (j) 60 detectors over 135°, with IAWFBP; (k) 120 detectors over 180°, with IAWFBP; (l), 240 detectors over 360°, with IAWFBP.

Fig. 3.
Fig. 3.

Reconstruction NMAE (a) from 180° with a different total number of detection positions and (b) from 60 detectors over 180° noisy observation with different SNR.

Fig. 4.
Fig. 4.

Reconstructed photoacoustic images based on few-detector data. (a) 60 detectors over 180°, with FBP. The insert at the top-right corner is the photograph of the phantom. (b) 60 detectors over 180°, with ART-FBP. (c) 60 detectors over 180°, with IAWFBP. (d) 120 detectors over 360°, with FBP. (e) 120 detectors over 360°, with ART-FBP. (f) 120 detectors over 360°, with IAWFBP.

Fig. 5.
Fig. 5.

Center line profile of the reconstructed image shown in Fig. 4(f) with y=10.52mm.

Fig. 6.
Fig. 6.

PAI of three slices of pork livers that were buried 3 mm deep in a pork fat slab. (a) 60 detectors over 180°, with FBP. The insert at the top-right corner is the picture of the imaged biological tissues. (b) 60 detectors over 180°, with ART-FBP. (c) 60 detectors over 180°, with IAWFBP. (d) 120 detectors over 360°, with FBP. (e) 120 detectors over 360°, with ART-FBP. (f) 120 detectors over 360°, with IAWFBP.

Tables (1)

Tables Icon

Table 1. Analytical Circles Numerical Phantom Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p(r0,t)=β4πCpA(r)|r0r|I(t)td3r|t=t|r0r|/c,
A(r)=r02Cp2πβc4φ0dφ01tp(r0,t)t|t=|r0r|/c.
A(r)r02Cp2πβc4θ1θ2dθ01θetp(r0,t)t|t=|r0r|/c,
λ1=max(y)min(y)max(x0)min(x0)
x1=x0+αΔx1=x0+αΨ(yλ1Φx0).
λi=max(y)min(y)max(xi)min(xi)
xi=xi1+Δxi=xi1+αΨ(yλiΦxxi1),i=1,2,.
δi=xix2/x2.
ei=xixi12/xi2<ε,(i=1,2,n)

Metrics