Abstract

Determining an appropriate regularization parameter is often challenging work because it has a narrow range and varies with problems, which is likely to lead to large reconstruction errors. In this contribution, an adaptive regularized method based on homotopy is presented for sparse fluorescence tomography reconstruction. Due to the adaptive regularization strategy, the proposed method is always able to reconstruct sources accurately independent of the estimation of the regularization parameter. Moreover, the proposed method is about two orders of magnitude faster than the two contrasting methods. Numerical and in vivo mouse experiments have been employed to validate the robustness and efficiency of the proposed method.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization

Hongbo Guo, Jingjing Yu, Xiaowei He, Yuqing Hou, Fang Dong, and Shuling Zhang
Biomed. Opt. Express 6(5) 1648-1664 (2015)

Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method

Jinzuo Ye, Chongwei Chi, Zhenwen Xue, Ping Wu, Yu An, Han Xu, Shuang Zhang, and Jie Tian
Biomed. Opt. Express 5(2) 387-406 (2014)

Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography

Huangjian Yi, Duofang Chen, Xiaochao Qu, Kuan Peng, Xueli Chen, Yuanyuan Zhou, Jie Tian, and Jimin Liang
Appl. Opt. 51(7) 975-986 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription