Abstract

Dual-beam fiber trapping is a versatile technique for manipulating microparticles. We fabricate and evaluate the performance of a compact trap-on-a-chip design and demonstrate, for what we believe is the first time, trapping of low-contrast (m<1.005) lipid vesicles in solution. Counterpropagating fibers are fixed along the chip channel, and we calibrate the trap by optically displacing polystyrene microspheres from the trap center. Measured scattering forces are 3049pN from each beam. Stable trapping and reversible deformation of lipid vesicles is demonstrated under femtonewton trapping forces. This chip has applications in probing a variety of soft biomaterials, such as biological cells, lipid membranes, and protein assemblies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
    [CrossRef]
  2. R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
    [CrossRef]
  3. P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011).
    [CrossRef]
  4. Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
    [CrossRef]
  5. D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
    [CrossRef]
  6. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
    [CrossRef]
  7. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
    [CrossRef]
  9. P. B. Bareil, Y. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503–12509 (2006).
    [CrossRef]
  10. A. E. Ekpenyong, C. L. Posey, J. L. Chaput, A. K. Burkart, M. M. Marquardt, T. J. Smith, and M. G. Nichols, “Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Appl. Opt. 48, 6344–6354 (2009).
    [CrossRef]
  11. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
    [CrossRef]
  12. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
    [CrossRef]
  13. E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
    [CrossRef]
  14. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18, 4679–4688 (2010).
    [CrossRef]
  15. D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
    [CrossRef]
  16. B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010).
    [CrossRef]
  17. R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
    [CrossRef]
  18. T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
    [CrossRef]
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [CrossRef]
  20. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
    [CrossRef]
  21. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express 16, 9306–9317 (2008).
    [CrossRef]
  22. F. C. Allard, “Fiber-optic splices, connectors, and couplers,” in Fiber Optics Handbook, P. Morra and E. Vezzoni, eds. (McGraw-Hill, 1990), pp. 3.12–3.14.
  23. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  25. C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Versions 1&2, IAP Research Report, No. 2002-08 & -11, Institut für angewandte Physik, Universitäat Bern (2002). http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=199 .
  26. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
    [CrossRef]
  27. K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
    [CrossRef]
  28. C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
    [CrossRef]
  29. D. Blair and E. Dufresne, “Matlab particle tracking code repository,” (2002), http://physics.georgetown.edu/matlab/ .
  30. J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
    [CrossRef]
  31. M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
    [CrossRef]
  32. T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
    [CrossRef]

2011 (1)

P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011).
[CrossRef]

2010 (5)

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18, 4679–4688 (2010).
[CrossRef]

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010).
[CrossRef]

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

2009 (3)

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

A. E. Ekpenyong, C. L. Posey, J. L. Chaput, A. K. Burkart, M. M. Marquardt, T. J. Smith, and M. G. Nichols, “Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Appl. Opt. 48, 6344–6354 (2009).
[CrossRef]

Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
[CrossRef]

2008 (1)

2007 (1)

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

2006 (5)

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

P. B. Bareil, Y. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503–12509 (2006).
[CrossRef]

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

2005 (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

2004 (1)

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

2002 (1)

K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
[CrossRef]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

1997 (2)

D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
[CrossRef]

E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
[CrossRef]

1993 (1)

1992 (1)

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

1978 (1)

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Allard, F. C.

F. C. Allard, “Fiber-optic splices, connectors, and couplers,” in Fiber Optics Handbook, P. Morra and E. Vezzoni, eds. (McGraw-Hill, 1990), pp. 3.12–3.14.

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Angelova, M. I.

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Aranda, S.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Badizadegan, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Bareil, P. B.

Baumgart, T.

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

Bellini, N.

Bendix, P. M.

P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011).
[CrossRef]

Best-Popescu, C. A.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Bezlyepkina, N.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Blakely, J. T.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

Bothorel, P.

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Bragheri, F.

Burkart, A. K.

Chang, K.-A.

K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
[CrossRef]

Chaput, J. L.

Chen, H.-Y.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

Chiou, A.

Choi, M. C.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Collins, S. D.

E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
[CrossRef]

Constable, A.

Cristiani, I.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Dabrowski, B.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

Das, S.

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

Dasari, R. R.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Dimova, R.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Ebert, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Ekpenyong, A. E.

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Eriksson, E.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Faucon, J. F.

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Feld, M. S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Ferrara, L.

Fygenson, D. K.

D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
[CrossRef]

Garstecki, P.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Goksör, M.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Gordon, R.

Granéli, A.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Guck, J.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Hanstorp, D.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

Ichikawa, M.

Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
[CrossRef]

Ikeda, T.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Jankowski, P.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

Jenkins, J. T.

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

Jeong, C.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Kawano, M.

Kestin, J.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
[CrossRef]

Kim, C.-B.

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Kim, J.

Kim, J. H.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Kim, M. W.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Kim, S.-J.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Kimura, Y.

Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
[CrossRef]

Knoesen, A.

E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
[CrossRef]

Kwon, T. H.

B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010).
[CrossRef]

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Lee, B. K.

B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010).
[CrossRef]

Lee, S. D.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Lee, S.-W.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Libchaber, A.

D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
[CrossRef]

Lim, H.

K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
[CrossRef]

Lincoln, B.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Lipowsky, R.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Liu, F.-T.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

Liu, G.-Y.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

Lulevich, V.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

Lundqvist, F.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Marko, J. F.

D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
[CrossRef]

Marquardt, M. M.

Mätzler, C.

C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Versions 1&2, IAP Research Report, No. 2002-08 & -11, Institut für angewandte Physik, Universitäat Bern (2002). http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=199 .

Méléard, Ph.

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Mervis, J.

Miles, R. E. H.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

Minzioni, P.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

Nichols, M. G.

Nikolov, V.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Oddershede, L. B.

P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011).
[CrossRef]

Ogonczyk, D.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

Orr-Ewing, A. J.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

Osellame, R.

Phillips, R.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

Popescu, G.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

Posey, C. L.

Prentiss, M.

Ramponi, R.

Reid, J. P.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

Riske, K. A.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Rudic, S.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

Sauer, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

Schinkinger, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Scrimgeour, J.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Sens, P.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

Sheng, Y.

Shitamichi, Y.

Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
[CrossRef]

Sidick, E.

E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
[CrossRef]

Sinton, D.

Smith, T. J.

Sokolov, M.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
[CrossRef]

Soléau, S.

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Sott, K.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Su, C. B.

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
[CrossRef]

Sveningsson, M.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Travis, K.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Ursell, T.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

Vishnubhatla, K. C.

Wakeham, W. A.

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
[CrossRef]

Web, W. W.

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

Wegrzyn, J.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

Wiggins, P.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

Wottawah, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

Yoon, T.-Y.

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Zarinetchi, F.

Zink, T.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

App. Opt. (1)

E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997).
[CrossRef]

Appl. Opt. (1)

Biomed Microdevices (1)

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007).
[CrossRef]

Biophys. J. (3)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef]

T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010).
[CrossRef]

J. Phys. (1)

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006).
[CrossRef]

J. Phys. Chem. A. (1)

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010).
[CrossRef]

J. Phys. Chem. Ref. Data. (1)

J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978).
[CrossRef]

Lab Chip (2)

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010).
[CrossRef]

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010).
[CrossRef]

Langmuir (1)

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006).
[CrossRef]

Meas. Sci. Technol. (2)

K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002).
[CrossRef]

C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Nano Lett. (1)

P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011).
[CrossRef]

Nat. Mater. (1)

T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006).
[CrossRef]

Nature (1)

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997).
[CrossRef]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Prog. Colloid Polym. Sci. (1)

M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[CrossRef]

Other (5)

F. C. Allard, “Fiber-optic splices, connectors, and couplers,” in Fiber Optics Handbook, P. Morra and E. Vezzoni, eds. (McGraw-Hill, 1990), pp. 3.12–3.14.

H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Versions 1&2, IAP Research Report, No. 2002-08 & -11, Institut für angewandte Physik, Universitäat Bern (2002). http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=199 .

D. Blair and E. Dufresne, “Matlab particle tracking code repository,” (2002), http://physics.georgetown.edu/matlab/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Side (a) and top view (b) schematics of the trapping platform with two optical fibers positioned between two “guide” fibers. The trapping region is located in the small space between the separated trapping fibers (125–135 μm). Also shown in (c) a brightfield image of the fiber bundle at the trapping region.

Fig. 2.
Fig. 2.

Plot showing coupling efficiencies as a function of fiber separation for single-mode trapping fibers. The theoretical curve is based on transmission of Gaussian beams between perfectly aligned fibers.

Fig. 3.
Fig. 3.

Microscope images of (a) an optically trapped 6 μm polystyrene bead in water initially trapped at 20 mW (arrow) and (b) a bead displaced from the trap center along the z axis (beam axis) when one laser is suddenly offset to 30 mW. (c) A log/lin plot of bead displacement as a function of time after a sudden laser power asymmetry and subsequent rebalancing where the beads fall back into the trap center. Inset is a typical displacement plot on linear axes.

Fig. 4.
Fig. 4.

Microscopy images of optically trapped vesicles containing 5 mM PEG 8000 in water, with an exterior solution of 5 mM aqueous D-glucose. (a) Brightfield image of an optically trapped, multilamellar vesicle with 30 mW incident powers from both lasers. (b) DIC images of a unilamellar vesicle (bar=5μm) initially trapped at 16 mW then optically stretched at higher powers (c,d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ=16π2aS[P1Qprωo2λ2(S2+4d2)2+P2Qprωo2λ2(S2+4d2)2],
κ=6πμrτ,

Metrics