R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering,” Proc. SPIE 8227, 822705 (2012).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Reducing noise in extended depth of field microscope images by optical manipulation of the point spread function,” Proc. SPIE 7904, 79041E (2011).

[CrossRef]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 298–314 (2011).

[CrossRef]

I. E. Beckers, R. H. Cormack, and C. J. Cogswell, “Real-time extended-depth DIC microscopy,” Proc. SPIE 7570, 757013 (2010).

[CrossRef]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235, 144–162 (2009).

[CrossRef]

J. B. Pawley, “Limitations on optical sectioning in live-cell confocal microscopy,” Scanning 24, 241–246 (2002).

[CrossRef]

X. P. Zhang, “Thresholding neural network for adaptive noise reduction,” Neural Networks 12, 567–584 (2001).

[CrossRef]

S. C. Tucker, W. T. Cathey, and E. Dowski, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Express 4, 467–474 (1999).

[CrossRef]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

A. Hasegawa, K. Itoh, and Y. Ichioka, “Generalization of shift invariant neural networks: image processing of corneal endothelium,” Neural Networks 9, 345–356 (1996).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network applications in medical imaging and signal processing,” Med. Biol. Eng. Comput. 30, 449–464 (1992).

[CrossRef]

A. D. Hillery and R. T. Chin, “Iterative Wiener filters for image resoration,” IEEE Trans. Signal Process. 39, 1892–1899 (1991).

[CrossRef]

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).

[CrossRef]

M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, in Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, 2003).

I. N. Bankman, in Handbook of Medical Imaging (Academic, 2000), Chap. 1.

I. E. Beckers, R. H. Cormack, and C. J. Cogswell, “Real-time extended-depth DIC microscopy,” Proc. SPIE 7570, 757013 (2010).

[CrossRef]

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network applications in medical imaging and signal processing,” Med. Biol. Eng. Comput. 30, 449–464 (1992).

[CrossRef]

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006).

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006).

A. D. Hillery and R. T. Chin, “Iterative Wiener filters for image resoration,” IEEE Trans. Signal Process. 39, 1892–1899 (1991).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering,” Proc. SPIE 8227, 822705 (2012).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Reducing noise in extended depth of field microscope images by optical manipulation of the point spread function,” Proc. SPIE 7904, 79041E (2011).

[CrossRef]

I. E. Beckers, R. H. Cormack, and C. J. Cogswell, “Real-time extended-depth DIC microscopy,” Proc. SPIE 7570, 757013 (2010).

[CrossRef]

M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, in Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, 2003).

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering,” Proc. SPIE 8227, 822705 (2012).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Reducing noise in extended depth of field microscope images by optical manipulation of the point spread function,” Proc. SPIE 7904, 79041E (2011).

[CrossRef]

I. E. Beckers, R. H. Cormack, and C. J. Cogswell, “Real-time extended-depth DIC microscopy,” Proc. SPIE 7570, 757013 (2010).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network applications in medical imaging and signal processing,” Med. Biol. Eng. Comput. 30, 449–464 (1992).

[CrossRef]

A. Hasegawa, K. Itoh, and Y. Ichioka, “Generalization of shift invariant neural networks: image processing of corneal endothelium,” Neural Networks 9, 345–356 (1996).

[CrossRef]

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 1989), pp. 593–605.

A. D. Hillery and R. T. Chin, “Iterative Wiener filters for image resoration,” IEEE Trans. Signal Process. 39, 1892–1899 (1991).

[CrossRef]

A. Hasegawa, K. Itoh, and Y. Ichioka, “Generalization of shift invariant neural networks: image processing of corneal endothelium,” Neural Networks 9, 345–356 (1996).

[CrossRef]

A. Hasegawa, K. Itoh, and Y. Ichioka, “Generalization of shift invariant neural networks: image processing of corneal endothelium,” Neural Networks 9, 345–356 (1996).

[CrossRef]

K. Jain, Fundamentals of Digital Images Processing(Prentice-Hall, 1989).

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006).

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235, 144–162 (2009).

[CrossRef]

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986).

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235, 144–162 (2009).

[CrossRef]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network applications in medical imaging and signal processing,” Med. Biol. Eng. Comput. 30, 449–464 (1992).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

J. B. Pawley, “Limitations on optical sectioning in live-cell confocal microscopy,” Scanning 24, 241–246 (2002).

[CrossRef]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 298–314 (2011).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986).

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006).

M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, in Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, 2003).

S. Tamura, “An analysis of a noise reduction neural network,” in Proceedings of International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1989), pp. 2001–2004.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, in Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, 2003).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 298–314 (2011).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering,” Proc. SPIE 8227, 822705 (2012).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Reducing noise in extended depth of field microscope images by optical manipulation of the point spread function,” Proc. SPIE 7904, 79041E (2011).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

X. P. Zhang, “Thresholding neural network for adaptive noise reduction,” Neural Networks 12, 567–584 (2001).

[CrossRef]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235, 144–162 (2009).

[CrossRef]

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).

[CrossRef]

A. D. Hillery and R. T. Chin, “Iterative Wiener filters for image resoration,” IEEE Trans. Signal Process. 39, 1892–1899 (1991).

[CrossRef]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).

[CrossRef]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235, 144–162 (2009).

[CrossRef]

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network applications in medical imaging and signal processing,” Med. Biol. Eng. Comput. 30, 449–464 (1992).

[CrossRef]

W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Med. Phys. 23, 595–601 (1996).

[CrossRef]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[CrossRef]

X. P. Zhang, “Thresholding neural network for adaptive noise reduction,” Neural Networks 12, 567–584 (2001).

[CrossRef]

A. Hasegawa, K. Itoh, and Y. Ichioka, “Generalization of shift invariant neural networks: image processing of corneal endothelium,” Neural Networks 9, 345–356 (1996).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering,” Proc. SPIE 8227, 822705 (2012).

[CrossRef]

I. E. Beckers, R. H. Cormack, and C. J. Cogswell, “Real-time extended-depth DIC microscopy,” Proc. SPIE 7570, 757013 (2010).

[CrossRef]

R. N. Zahreddine, R. H. Cormack, and C. J. Cogswell, “Reducing noise in extended depth of field microscope images by optical manipulation of the point spread function,” Proc. SPIE 7904, 79041E (2011).

[CrossRef]

J. B. Pawley, “Limitations on optical sectioning in live-cell confocal microscopy,” Scanning 24, 241–246 (2002).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).

[CrossRef]

K. Jain, Fundamentals of Digital Images Processing(Prentice-Hall, 1989).

J. T. Bushberg, J. A. Seibert, E. M. Leidholt, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2006).

M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, in Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, 2003).

I. N. Bankman, in Handbook of Medical Imaging (Academic, 2000), Chap. 1.

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986).

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 1989), pp. 593–605.

S. Tamura, “An analysis of a noise reduction neural network,” in Proceedings of International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1989), pp. 2001–2004.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.