Abstract

Optical coherence tomography (OCT) is becoming a popular modality for skin tumor diagnosis and assessment of tumor size and margin status. We conducted a number of imaging experiments on periocular basal cell carcinoma (BCC) specimens using an OCT configuration. This configuration employs a dynamic focus (DF) procedure where the coherence gate moves synchronously with the peak of the confocal gate, which ensures better signal strength and preservation of transversal resolution from all depths. A DF-OCT configuration is used to illustrate morphological differences between the BCC and its surrounding healthy skin in OCT images. The OCT images are correlated with the corresponding histology images. To the best of our knowledge, this is the first paper to look at DF-OCT imaging in examining periocular BCC.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
    [CrossRef]
  2. E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
    [CrossRef]
  3. T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).
  4. N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002).
    [CrossRef]
  5. G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).
  6. C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).
  7. SkinCancerNet, http://www.skincarephysicians.com/skincancernet/dermoscope.html , last accessed November (2010).
  8. L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
    [CrossRef]
  9. S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996).
    [CrossRef]
  10. J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).
  11. A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
    [CrossRef]
  12. A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
    [CrossRef]
  13. M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
    [CrossRef]
  14. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
    [CrossRef]
  15. K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
    [CrossRef]
  16. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
    [CrossRef]
  17. E. Gratton and M. J. vandeVen, “Laser sources for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 69–98.
  18. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [CrossRef]
  19. S. DeMaggio, “Running and setting up a confocal microscope core facility, biological applications of confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic, 2002), Vol. 70, pp. 475–486.
  20. M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
    [CrossRef]
  21. A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
    [CrossRef]
  22. M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
    [CrossRef]
  23. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
    [CrossRef]
  24. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
    [CrossRef]
  25. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
    [CrossRef]
  26. M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
    [CrossRef]
  27. M. Hughes, “Optical coherence tomography for art conservation and archaeology: methods and applications,” Ph.D. thesis (University of Kent, 2010).
  28. D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
  29. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
    [CrossRef]
  30. J. Weissman, T. Hancewicz, and P. Kaplan, “Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis,” Opt. Express 12, 5760–5769 (2004).
    [CrossRef]
  31. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [CrossRef]
  32. T. B. Fitzpatrick, “Soleil et pau,” J. Med. Aesthetics 2, 33–34 (1975).
  33. T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
    [CrossRef]
  34. N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
    [CrossRef]
  35. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
    [CrossRef]
  36. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).
  37. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.
  38. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.
  39. B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
    [CrossRef]
  40. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
    [CrossRef]
  41. J. Holmes, “Theory & applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
    [CrossRef]
  42. G. M. H. M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
  43. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef]
  44. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.
  45. J. Schmitt, G. Zhou, E. Walker, and R. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef]

2013 (2)

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

2012 (3)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
[CrossRef]

2011 (1)

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

2010 (2)

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
[CrossRef]

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

2009 (2)

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

2008 (4)

J. Holmes, “Theory & applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
[CrossRef]

2007 (2)

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

2006 (1)

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

2005 (1)

C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).

2004 (2)

2003 (2)

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

2002 (2)

N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002).
[CrossRef]

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

2001 (3)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef]

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).

1999 (3)

E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
[CrossRef]

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

1997 (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

1996 (1)

S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996).
[CrossRef]

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

1993 (1)

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

1990 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef]

1975 (1)

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Aesthetics 2, 33–34 (1975).

1973 (1)

Aber, A.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

Abmayr, W.

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Albert, R.

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Altmeyer, P.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Amini, S.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Andersen, C.

Andersen, C. B.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Andersen, P.

Andersen, P. E.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Anderson, R. R.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

Andersson-Engels, S.

Argenziano, G.

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef]

Avanaki, M.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Avanaki, M. R. N.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.

Bechara, F. G.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Berman, B.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Bines, S.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Bradu, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Braudo, A.

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.

Busam, K.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Carrington, P. R.

E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
[CrossRef]

Charles, C.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Claridge, E.

S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996).
[CrossRef]

Cotton, S.

S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996).
[CrossRef]

Dancey, A.

A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
[CrossRef]

DeMaggio, S.

S. DeMaggio, “Running and setting up a confocal microscope core facility, biological applications of confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic, 2002), Vol. 70, pp. 475–486.

Dhawan, A.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Dhingra, N.

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Di Stefani, A.

C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).

Dover, D. C.

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

Drezek, R.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef]

Elgart, G.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

Fitzpatrick, T. B.

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Aesthetics 2, 33–34 (1975).

Follen, M.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Frosz, M.

Frosz, M. H.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Gajdasty, A.

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Gambichler, T.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Gerger, A.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Goldgeier, M.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

González, S.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

Goshtasby, A.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Gratton, E.

E. Gratton and M. J. vandeVen, “Laser sources for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 69–98.

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

Halpern, A.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Hancewicz, T.

Hansen, P.

Hansen, P. R.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Harms, H.

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Hoffmann, K.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Hojjatoleslami, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.

Hojjatoleslami, S.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Hojjatoleslami, S. A.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

Holmes, J.

J. Holmes, “Theory & applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

Hughes, M.

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

M. Hughes, “Optical coherence tomography for art conservation and archaeology: methods and applications,” Ph.D. thesis (University of Kent, 2010).

Huntley, A.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Jackowski, M.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Jones, C.

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

Jones, C. A.

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Jorgensen, T. M.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Jung, G. W.

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

Kaplan, P.

Kerl, H.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Khandwala, M.

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Koller, S.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Kollias, N.

N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002).
[CrossRef]

Konda, S.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Krippl, P.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Lane, C. M.

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Lee, K.-S.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Levitz, D.

D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Liu, Y.

Lohmann, C.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Mahon, B.

A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
[CrossRef]

Malpica, A.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Marghoob, A.

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Massone, C.

C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).

Meemon, P.

Metelitsa, A. I.

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

Moussa, G.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Mukherjee, A. N.

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Murali, S.

Nasiriavanaki, M. R.

Nasiri-Avanaki, M. R. N.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

Neal, J. W.

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Orlikov, A.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Patel, J. K.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Pavlova, I.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Penmetsa, B. R.

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Perez, O. A.

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

Podoleanu, A.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

Podoleanu, A. Gh.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.

Querry, G. M. H. M. R.

Rajadhyaksha, M.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

Rayatt, S.

A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
[CrossRef]

Ribeiro, A. B. L.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Richards-Kortum, R.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Richtig, E.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Rolland, J. P.

Roseman, D.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Russell, E. B.

E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
[CrossRef]

Salopek, T. G.

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

Samonigg, H.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Schindewolf, T.

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Schmitt, J.

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Schofield, J.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Schofield, J. B.

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

Sira, M.

M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

Smolle, J.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Smoller, B. R.

E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
[CrossRef]

Sokolov, K.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Soyer, H. P.

C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).

Stamatas, G. N.

N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002).
[CrossRef]

Stolz, W.

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Stücker, M.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Swartling, J.

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef]

Thompson, K. P.

Thrane, L.

D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

Trifanov, I.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef]

Valanciunaite, J.

vandeVen, M. J.

E. Gratton and M. J. vandeVen, “Laser sources for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 69–98.

Vasa, R.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

Walker, E.

Wall, R.

Webb, R. H.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

Weger, W.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Weissman, J.

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

Xu, L.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef]

Yu, C.

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Zavislan, J. M.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

Zhou, G.

Anal. Quant. Cytol. Histol. (1)

T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).

Appl. Opt. (3)

Br. J. Dermatol. (1)

G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010).
[CrossRef]

Br. J. Ophthalmol. (1)

N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007).
[CrossRef]

Cancer (1)

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006).
[CrossRef]

Curr. Opin. Oncol. (1)

C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).

Electron. Lett. (1)

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

Eur. J. Dermatol. (1)

J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).

IEEE Photon. Technol. Lett. (1)

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Image Vision Comput. (1)

L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999).
[CrossRef]

J. Am. Acad. Dermatol. (1)

E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999).
[CrossRef]

J. Biomed. Opt. (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef]

J. Dermatol. Sci. (1)

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007).
[CrossRef]

J. Invest. Dermatol. (3)

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef]

J. Med. Aesthetics (1)

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Aesthetics 2, 33–34 (1975).

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[CrossRef]

J. Mod. Opt. (1)

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Plast. Reconstr. Aesthet. Surg. (1)

A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008).
[CrossRef]

Journal Investig. Dermatol. Symp. Proc. (1)

N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002).
[CrossRef]

Lancet Oncol. (1)

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).

Melanoma Res. (1)

K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002).
[CrossRef]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef]

Opt. Commun. (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Opt. Express (3)

Photochem. Photobiol. (1)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003).
[CrossRef]

Proc. SPIE (5)

S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).

J. Holmes, “Theory & applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008).
[CrossRef]

Skin Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef]

Other (7)

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.

M. Hughes, “Optical coherence tomography for art conservation and archaeology: methods and applications,” Ph.D. thesis (University of Kent, 2010).

SkinCancerNet, http://www.skincarephysicians.com/skincancernet/dermoscope.html , last accessed November (2010).

E. Gratton and M. J. vandeVen, “Laser sources for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 69–98.

S. DeMaggio, “Running and setting up a confocal microscope core facility, biological applications of confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic, 2002), Vol. 70, pp. 475–486.

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of the DF TD-OCT optical setup employed. SLD, superluminescent laser diode; PD, photodiode; M, microscope objective; XY, transversal Galvo scanners; C, 2×2 coupler; PC, personal computer; BD, balance detection; CL, collimator lens; MPC, mirror positioning controller; MC, motion controller; PC1 and PC2, polarization controllers; TS, translation stage for depth scanning with DF.

Fig. 2.
Fig. 2.

Images of specimens, showing marking sutures in situ. (a) Skin sample taken from the eyelid of a 75-year-old white male (experiment 2); size of the specimen is 8mm×3mm. (b) Skin sample taken from the corner of the eye of a 78-year-old white male (experiment 3); size of the specimen is 5mm×2mm.

Fig. 3.
Fig. 3.

Results of experiment 1. C-scan images of the skin under the left eye of a 77-year-old white male (skin type II) at depths of 238, 406, and 518 μm measured in air from the skin surface. The orange arrows show the BCC regions. The size of the images is 1.375mm×1.375mm.

Fig. 4.
Fig. 4.

Results of experiment 1. 3D projection of OCT sequence images. The arrows show the more probable BCC regions.

Fig. 5.
Fig. 5.

Results of experiment 2. C-scan images of the eyelid of the 75-year-old white male (type II) at depths 300–1500 μm. The depth was measured from the top of the sample (in air). The arrows show BCC sites. The size of the images is 4.5mm×4.5mm.

Fig. 6.
Fig. 6.

Results of experiment 2. B-scan images of the eyelid of a 75-year-old white male (type II) taken from the center of the sample. The orange arrows show the suspicious areas to be BCC. The size of the image is 4.5mm×2.5mm.

Fig. 7.
Fig. 7.

Histological images of the nodular BCC corresponding to the sample in experiment 2. The image on the right shows multiple tumor lobules that correspond to honeycomb-like signal-poor structures in the OCT images in Fig. 6. The size of the tissue in the left image is 5mm×2.5mm. Magnification: left: ×20, right ×100.

Fig. 8.
Fig. 8.

(a) and (b) OCT C-scan and histological images of the nodular BCC corresponding to the sample in the experiment 2. The orange arrows show the suspicious areas to be BCC.

Fig. 9.
Fig. 9.

Results of experiment 3. OCT C-scan images of the eyelid of a 78-year-old white male (type II) at depths of 240–930 μm. The depth was measured from the top of the sample (in air). The orange arrows show the areas that are most likely BCC as evidenced by histology. The size of the images is 4.5mm×4.5mm.

Fig. 10.
Fig. 10.

Results of experiment 3. B-scan images of the eyelid of a 78-year-old white male (type II) taken from different transverse locations starting from the center of the sample. The orange arrows show the suspected areas for BCC. The white arrows show the sweat ducts. The dotted red circle shows a capillary in the skin. The size of the image is 4.5mm×1mm.

Fig. 11.
Fig. 11.

Histological images of the nodular BCC corresponding to the sample in experiment 3. (a) and (b) show the affected region of the skin by BCC of the specimen in experiment 3 [magnifications: (a) ×20 and (b) ×50]. (c) Histology of cystic area adjacent to the BCC that is either a dilated duct/hair follicle or a small epidermoid cyst. (d)–(f) are dilated sebaceous/sweat glands and ducts also adjacent to the BCC but on the opposite side to the cyst shown in (c) [magnification: (d) ×20 and (e) ×50 and (f) ×100].

Fig. 12.
Fig. 12.

(a) and (b) OCT C-scan and histological images of the nodular BCC, respectively, corresponding to the sample in experiment 2. Orange arrows show the suspicious areas to be BCC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i(z)=k[ρs+ρr+2ρsρrπcos(2πλ0z)]P02,

Metrics